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What is a point vortex?

▶ A point vortex is a solution to 2D inviscid incompressible fluid
equations with vorticity confined to a single point.

▶ In a point vortex model, the solution is represented by three
quantities, strength (circulation), position, and orientation.

What is the point vortex model?

▶ It is the idealization of Euler’s equations derived by
Helmholtz, which described the motion of two or more
interacting point vortices.

▶ The point vortex model is a Hamiltonian system, and this
allows us to use the mathematical theory and tools of
Hamiltonians to study it.



Helmholtz derivation of the vortex induction equations

▶ Let u(x, t) solve the 2D Euler’s equation.

▶ Particles advected according to ẋ = u(x, t).
▶ By Helmholtz decomposition

u = ∇ϕ+∇× ψ

where △ψ = −ω and ω = ∇× u.
▶ Let vorticity be concentrated at N points xi of circulation Γi :

ω(x) =
N∑
i=1

Γiδ(x− xi).

▶ Velocity due to each vortex given by the Green’s function for
2D Poisson equation, yielding evolution equations:

ẋi = − 1

2π

N∑
j ̸=i

Γj
(yi − yj)

||xj − xi ||2
and ẏi = +

1

2π

N∑
j ̸=i

Γj
(xi − xj)

||xj − xi ||2
.



Kirchhoff’s Hamiltonian Representation

Consider N-vortices located at ri = (xi , yi ) with the strength Γi ,
then the system of ODEs describing the N-vortex motion can be
described by the Hamiltonian,

Hamiltonian

H(r1, r2, r3, · · · , rN) = − 1

4π

∑
1≤i<j≤N

ΓiΓj log∥ri − rj∥2.

System of 2N point vortex equations:

Γi
dxi
dt

=
∂H
∂yi

, Γi
dyi
dt

= −∂H
∂xi

.



Motion of two vortices

▶ Opposite-signed vortices move in parallel along straight lines

▶ Like-signed vortices move along a circular path

These are examples of relative equilibria, i.e. the solutions are
stationary when observed in appropriate (translating or rotating)
reference frame.



Leapfrogging Motion in Vortex Rings

Leapfrogging smoke rings

Figure: Credit: Robert Morton,
Irvine Lab, University of Chicago

Leapfrogging in the pool

Figure: Credit: thephysicsgirl on
Instagram



Leapfrogging motion in a vortex rings is the historical motivation
to describe the leapfrogging motion of point vortices.
What is a leapfrogging motion of point vortices?

▶ A type of motion that involves two pairs of point vortices
leaping past each other.

▶ In a leapfrogging motion, two pairs of point vortices move
past each other in a way that resembles the movement of a
pair of leaping frogs.



Leapfrogging Motion of Point Vortices

Love (1893) showed the existence of a relative periodic orbit that
depends on a ratio α = d1

d2
, and one-parameter family of relative

periodic orbits exist for α > αexist = 3− 2
√
2.

α near 1 Smaller α



Prior Results: Acheson (2000) Eur. J. Phys.

Acheson found (via direct numerical simulation) that for α ≳ 0.382
the motion is stable and, further:

For 0.172 < α < 0.29,
unstable leapfrogging orbits
disintegrate:

disintegration

For 0.29 < α < 0.382, motion
goes into walkabout orbit:

walkabout

Goodman and Behring (2022) proved that this bifurcation occurs
at α = ϕ−2 ≈ 0.382, where ϕ is the golden ratio.



Rigidly-Rotating Configurations

What makes it interesting to study the generalized leapfrogging
problem?

▶ Kelvin (1872) studied rigidly-rotating configurations of N
identical vortices, where he first derived the linear stability for
N > 7 to be unstable, while N < 7 (linearly stable), and rings
of N = 7 are linearly neutral but non-linearly unstable,

▶ Such rigidly-rotating configurations are called relative
equilibria.

▶ Periodic solutions for which the configuration of vortices
rotates rigidly about the center of vorticity play a crucial role.
Such solutions are known as relative equilibria, since they are
fixed points in a rotating coordinate system.



Constructing the Leapfrogging Initial Conditions

▶ The ring of N like signed vortices is a generalization of the
two vortex case with Γ1 = Γ2.

▶ Therefore, placing two rings that mirror each other is the
generalization of the vortex leapfrogging we seek.



Generalization of Leapfrogging: Prior Results

Previous groups have studied the initial value problem but have
not constructed the relative periodic orbits.

▶ (a-c). The near-leapfrog initial conditions studied numerically
by Konstantinov.

▶ (d-e). The near-leapfrog initial conditions studied numerically
by Wacks et al.

▶ f. A leapfrogging-like motion of 7 vortex rings.



Generalized Leapfrogging Model

The leapfrogging motion of rigidly-rotating cluster of radius a at a
distance R above the x-axis and its mirror image, consisting of
vortices of opposite circulation, at a distance R below, depends on

β =
a

R
.

▶ For β ≪ 1, the far flow field due to each cluster will approach
that of a point vortex and we expect stable leapfrogging for
N ≤ 6.

What happens when we decrease the distance between two
clusters?

▶ We will use the numerical continuation to construct the
relative periodic orbits and analyze their linear stability.



Why the need to use numerics?

▶ It is generally impossible to find solutions analytically.
Therefore, we need to use numerics.

▶ We will discuss the specific numerical methods for the
continuation of periodic solutions.



Parameter Continuation

Continuation schemes are used to determine how solutions of the
system

ẋ = F(x;α), x ∈ Rn, α ∈ R,F : Rn × R → Rn (1)

vary with a certain parameter, here α.

▶ The idea of parameter continuation is to continue a given
equilibria of the system (1) by varying α.

▶ Given a solution, (x0, α0), we aim to find (x1, α1) on the same
branch using Newton’s method.

▶ The problem reduces to:

F(x1, α1) = 0, where α1 = α0 +∆α.



Drawback of Parameter continuation

▶ The parameter continuation method is bound to break down
at turning points, where

det{Fx} = 0.

▶ Keller (1987) proposed a continuation scheme called
pseudo-arclength continuation to overcome this problem.

▶ The Pseudo-arclength continuation scheme allows the
continuation of a solution family past a fold.



Pseudo-arclength Continuation

▶ In this scheme, x and α are considered to the function of s,
arc-length.

▶ Now, the idea is to find the roots of the system

F(x(s), α(s)) = 0. (2)

▶ (x1, α1) satisfies the orthogonality condition below.



Pseudo-arclength Continuation

▶ Differentiating both sides of the Equation (2) with respect to s

Fx(x, α) ẋ+ Fα(x, α) α̇ = 0,

gives rise to n linear algebraic equations in (n + 1) unknowns
ẋ and α̇.

▶ The normalized arc-length condition

ẋTẋ+ α̇2 = 1. (3)

is used to determine the solutions of the above system
uniquely.

▶ The orthogonality condition is

⟨(x1 − x̃, α1 − α̃)|(x0 − x̃, α0 − α̃)⟩ = 0, (4)

Equations (3) and (4) give us

F(x1, α1) = 0, and (x1 − x0)
Tẋ0 + (α1 − α0)α̇0 −∆s = 0.



Shooting Method

We are interested in continuing the branches of relative periodic
orbits, not equilibria.

▶ Shooting method is used to find a single periodic orbit of (2)
by reformulating the system to a BVP.

▶ Our goal is to seek an initial condition x(0) = ηηη and a solution
x(t;ηηη) with a minimal period T such that

x(T , ηηη) = ηηη.



▶ T , ηηη are chosen close to T0, ηηη0 in such a way that

x(T0 + δT , ηηη0 + δηηη)− (ηηη0 + δηηη) ≃ 0. (5)

Linearization of Equation (5)[
∂x

∂ηηη
(T0, ηηη0)− I

]
δηηη +

[
∂x

∂T
(T0, ηηη0)

]
δT = ηηη0 − x(T0, ηηη0), (6)

where ∂x
∂ηηη is an n× n matrix, I is an n× n identity matrix, and

∂x
∂T is an n × 1 vector.

▶ We need to determine the matrix ∂x
∂ηηη at (T0, ηηη0) from (6).



▶ ∂x
∂ηηη is determined by linearized Equation (6).

▶ Once ∂x
∂ηηη at (T0, ηηη0) is known, from Equation (6) we have a

system of n equations in n + 1 unknowns, δηηη and δT .

▶ Uniqueness of the solution needs an additional condition,
which is given by

Orthogonality Condition (by Mees)

FTδηηη = 0.



A periodic orbit of the Rössler’s System

The defining equations of the Rössler system are:

dx

dt
= −y − z (7)

dy

dt
= x + ay (8)

dz

dt
= b + z(x − c) (9)





A periodic orbit of the Lorenz System



Continuation of Periodic orbits

▶ The continuation of periodic orbits is to combine two ideas, a
continuation of the equilibria and computing individual
periodic orbits.

▶ The idea is to use a solution x[t, ηηη(s), α(s)] of Equation (2) in
order to find the unknown period T (s) such that

x[T (s), ηηη(s), α(s)] = ηηη(s).

▶ The system (2) has n equations on n + 2 unknowns
ηηηT,T , and α, where T is the transpose.



Conditions for the Uniqueness of the solution

1. The first condition is the pseudo-arclength condition.

2. The second condition can be obtained by making use of the
Poincaré orthogonality condition or aligning the phases of the
two consecutive periodic solutions.



Poincaré Orthogonality Condition

Poincaré orthogonality condition is defined as enforcing that the
change in initial conditions between existing periodic orbit xk−1(t)
and the new periodic orbit xk(t) orthogonal to the vector field
evaluated at the initial point of xk−1(t), that is

Poincaré orthogonality condition

[xk(0)− xk−1(0)]
Tẋk−1(0) = 0.



Phase Condition

▶ The most common choice is the integral phase condition,
which is obtained by the solution that minimizes

D(ω) :=

∫ T

0
∥x̃k(t + ω)− xk−1(t)∥2dt, (10)

where x̃k(t + ω) is the solution for any ω.
▶ Differentiating both sides of Equation (10) with respect to ω,

we obtain the minima at ω = ω∗ (say) , that is,∫ T

0
[x̃k(t + ω∗)− xk−1(t)]

T ˙̃xk(t + ω∗)dt = 0.

▶ Let x̃k(t + ω∗) ≡ xk(t), and integrating by parts gives the
phase condition

Phase Condition∫ T

0
xk(t)

Tẋk−1(t)dt =

∫ T

0
xk(t)

TF(xk−1(t))dt = 0.



Pseudo-arclength constraint (Condition II)

The second condition is given by the pseudo-arclength constraint
(continuation equation)

Pseudo-arclength constraint∫ T

0
[xk(t)− xk−1(t)]

Tẋk−1(t)dt +M = 0,

where M = (Tk − Tk−1)Ṫk−1 + (αk − αk−1)α̇k−1 −∆s.



Modification for Hamiltonian System

Consider the system

u̇ = XH(u) = J∇H, u = (q,p) ∈ R2n (11)

and we denote the flow of system by
ϕH(t, u) = ϕtH(u), where J is 2n × 2n matrix.

▶ In Hamiltonian systems, conserved quantities and symmetries
are related by Noether’s theorem.

▶ The absence of the internal parameter in the Hamiltonian
systems causes the general continuation scheme to fail.

▶ Therefore, conserved quantities are used as a continuation
parameter to continue the the periodic orbits.



Modified System

▶ The new modified system is

u̇ = XH(u) +
k∑

i=1

αi∇Fi (u) (12)

where Fi ∈ F are chosen in such a way that
{∇Fi (p0), 1 ≤ i ≤ k} forms a basis for
W := {∇F (p0) : F ∈ F}.

▶ The idea of the continuation of a periodic solution of the
system (12) is to look for the solutions of the equation

G (T , p, α) := ϕH(T , p, α)− p = 0.

▶ Let u(t) is a T -periodic solution of the system (12). Then, we
have,

d

dt
F (u(t)) = ∥∇F (u(t))∥2, (13)

where F (u) :=
∑k

i=1 αiFi (u).



Modified System

▶ Integrating both of Equation (13) with respect to t, we get∫ T

0
∥∇F (u(t))∥2dt = F (u(T ))− F (u(0)) = 0 (14)

=⇒ ∇F (u(t)) = 0, ∀t ∈ R.

▶ From Equation (14), ∇Fj(p0) are linearly independent ∀j .
▶ If u(0) is taken sufficiently close to p0, then the same

argument is shows that ∇Fj(u(0)) are linearly independent ∀j .
▶ The linearly independency of ∇Fj(p0) shows that the

system (12) can only have a periodic orbit near Γ0 (periodic
orbit generated by p0) if α = 0.

▶ If α = 0, then the periodic orbits of the system (12) are same
as the periodic orbits of the Hamiltonian system (11).



Example: I
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Figure: Bifurcation diagram for Rössler’s System
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Figure: Continuation of a single periodic orbit in the Rössler’s System
using AUTO



Example: II

The defining equations of the modified pendulum system are:

dx1
dt

= x2 + λ sin(x1) (15)

dx2
dt

= − sin(x1) + λx2 (16)
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Figure: Bifurcation Diagram for the Modified Pendulum System
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Figure: x vs y solution for the Modified Pendulum System



Example III

Consider the system{
mẍ + U̇(x) + ϵḞ (x)a = 0

ä+ ω2a+ ϵF (x)a = 0
. (17)

with the Hamiltonian

H :=
m

2
ẋ2 + U(x) +

1

2
(ȧ2 + ω2a2) + ϵF (x)a. (18)

We will discuss a special case for which

U(x) = e−2x − e−x ,F (x) = e−x ,m = 1, ϵ = 1, ω2 = 1.5.

Writing the above system as the first order ODEs
ẋ = y

ẏ = 2e−2x − e−x + ae−x

ȧ = z

ż = −1.5a− e−x

. (19)



with the Hamiltonian

H :=
1

2
ẋ2 + e−2x − e−x +

1

2
(ȧ2 + 1.5a2) + e−xa. (20)

We have the given system
ẋ = y

ẏ = 2e−2x − e−x + ae−x

ȧ = z

ż = −2a− e−x

(21)

with the periodic boundary conditions:

x(T ) = x(0), a(T ) = a(0), (22)

for some unknown period T . The system (19) has periodic orbits
that are even in time. Therefore, we may look for periodic
solutions that satisfy {

ẋ(0) = y(0) = 0

ȧ(0) = z(0) = 0.
(23)



Single Period using Matlab

Figure: A single periodic solution for the system 24



▶ The Hamiltonian modification of the system 19 is given as

ẋ = J∇H+ α∇H, α is an unfolding parameter. (24)

where

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .



MAX x

0 1 2 3 4 5 6 7 8 9 1011

H

25000
0

25000
50000

75000
100000

125000

M
AX

 y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

B

Figure: Plot of conserved quantity with the solutions 24



Future Goals

▶ The immediate goal is set up the model for the N-vortex
system and apply the numerics that we proposed.

▶ The next goal is to construct and analyze the relative periodic
orbits, and understand the dynamics of such vortex model,
such as the linear stability of the system.

▶ We want to study the nonlinear dynamics when the
generalized leapfrogging orbit is unstable. For example: Is
there a generalization of the walkabout orbit for N > 2.



Thank You
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