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Abstract

We investigate three problems in point-vortices dynamics within a
two-dimensional, inviscid, incompressible fluid. We derive a new re-
duction of a system of three vortices. The integrable reduced system
has an easily visualized phase plane that illuminates the dynamics.
We apply it to explain the scattering of the point-vortex dipole with
a third vortex in two cases. We then add a fourth vortex and use
the reduced dynamics of the three-vortex system as the basis for the
perturbative study of dipole-dipole scattering.

The Point Vortex Model

The N vortex positions satisfy [4]:
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with the conserved Hamiltonian [5, 7],
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Vortices in the atmosphere.

The Scattering Problem

Aref [1] considered the scattering of a vortex dipoles with circu-
lations Γ1 = −Γ3 = 1 off a third stationary vortex with Γ2 = 1.

The system exhibits the following Scattering behavior:

• Direct Scattering (Large |ρ|): The original dipole interacts briefly
with vortex 2 before escaping infinity.

• Exchange Scattering (Small |ρ|): A new dipole consisting of vor-
tices 2 and 3 escapes to infinity.

Exchange Scattering Direct Scattering

Following Lydon et al.[6],

Previous studies dating back to Gröbli [2, 3] use a coordinate system
based on the side lengths of a triangle with its vertices located at the
three vortices.

This coordinate system imposes limitations
• The equations are algebraically unwieldy and are singular at all
collinear configurations.

• The reduction introduces nonphysical singularities.
• Understanding scattering requires solving the ODE system with el-
liptic functions instead of phase plane insights.

Jacobi Coordinates and Nambu Dynamics

The Jacobi coordinate transformation is used to simplify the formula-
tion in n-body problems by replacing the coordinates of two vortices
at positions rj and rj+1 by their displacement Rj = rj+1−rj and their
center of vorticity r̃j+1 =

Γjrj+Γj+1rj+1

Γj+Γj+1
, and then repeating the process.

The final Hamiltonian is independent of the center of vorticity R3. Af-
ter one more normalization
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We further simplify the dynamics using Nambu brackets, which refor-
mulate mechanics naturally when there are two conserved quantities.
According to the Nambu dynamics,

Ḟ = {F, 2Θ2, H}, where {F,G,K} = ∇F · (∇G×∇K) .

and for the conserved quantities
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and Θ2 = Z2 −X2 − Y 2,

the evolution equations are:
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with the new coordinates:

V2

(0, 0)
V1

 3V = V1 + V2

= Center of vorticity

X = −∥v1∥2 + ∥v2∥2;
Y = 2 ∥v1∥∥v2∥ sinϕ;
Z = ∥v1∥2 + ∥v2∥2;
Θ = −2 ∥v1∥∥v2∥ cosϕ.

Scattering for the case Γ2 = 1

In the X−Y coordinate system, initial conditions leading to each type
of scattering can be identified simply using phase-plane reasoning.

As ρ is varied Θ so does Θ and the trajectory on the phase plane
changes at values where the scattering diagram has vertical asymp-
totes, trajectories on a stable manifold of a hyperbolic fixed point.
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Interpreting the dynamics using the phase planes

• As t → −∞ trajectories retreat to infinity in the fourth quadrant.

• Exchange scattering solutions map to the dashed trajectories.

• Direct scattering solutions map to the dash-dot trajectories.

• Singular values of ρ in the scattering diagram correspond to the
stable manifolds of hyperbolic points in the phase plane. This ex-
plains the critical values ρ

d = −1 and ρ
d = 7

2.

Scattering for the case Γ2 ̸= 1

A Question: When Γ2 ̸= 1, exchange scattering is no longer possible
since vortices 2 and 3 cannot form a dipole. What replaces it?
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An Answer:

• For Γ ̸= 1 a new elliptic fixed point or singular point appears on the
right of the origin, surrounded by a homoclinic loop.

• All trajectories that begin in the fourth quadrant below the sepa-
ratrices as t → −∞ now wrap around the closed homoclinic and
escape to infinity in the third quadrant. Thus, exchange scattering
solutions get replaced by long-path direct scattering solutions.

Dipole-Dipole Scattering

Now consider the scattering of a narrow, fast, dipole that collides with
a wide, slow dipole.
• The simulation on the left shows two vortex-dipole scattering
events separated by intervals of free motion.

• Sweeping over parameters demonstrates chaotic scattering: the
output angle shows sensitive dependence on the input parameter.
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Chaotic Scattering

The Hamiltonian for the four-vortex system is, in Jacobi coordinates,
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where M = r1 + r2 − r3 − r4 is the conserved linear impulse.

The new terms can be treated perturbatively when the fourth vortex
is far from the other three.
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