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Abstract

We investigate two problems in point-vortex dynamics in a two-dimensional,
inviscid, incompressible fluid. We derive a novel reduction of a system involv-
ing three vortices, initially employing Jacobi coordinates followed by Nambu
brackets. First, we conduct a global phase analysis of a three-vortex problem
with arbitrary circulations. Second, we generdlize the reduction method to
study the dynamics of four vortices with vanishing total circulation. The novel
reduction method eliminates coordinate singularifies that made understanding
the dynamics challenging.

The Point Vortex Model

The N vortex positions satisfy (5):
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with the conserved Hamiltonian (6, 7),
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Vortices in the atmosphere.

Previous Studies and Limitations

Previous studies by Grébli (1, 4) infroduced a coordinate system based on the
triangle side lengths with vertices at the three vortices. The coordinate system
has the following issues:

e Singularity in equations at collinear configurations.
e Nonphysical singularities intfroduced during reduction.
Under the assumption
I'y+I9+13=1,

Aref derived a bifurcation diagram showing how the phase space depends on
the circulations.

Aref’'s barycentric coordinates illustrate how three-vortex dynamics vary with the
sign of x9: blue shading shows spherical dynamics (9 > 0), while the unshaded
area represents hyperbolic dynamics (g < 0) in the XY plane projection.

Aref’s Phase Planes

e Portions lying outside the shaded regions lack physical meaning.

e Dynamics singular at collinear relative equilibria (o).

e Aref’s phase space based on his method is hard to follow.

A famous example of the vortex collapse case, where I'1 Ty + ['sI's + 1’5 = O.
’The dipole is formed by same vortices after interacting with initial vortex 2; else Exchange.
3Region 4 (d) in 4.
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Phase diagrams in trilinear coordinates for vortices of circulations (1, 1, —1) in
Aref’s trilinear coordinates.

A novel coordinate reduction

l. Jacobi Coordinates

e The Jacobi coordinate transformation is used to simplify the formulation in
n-body problemes.

e [t replaces the coordinates of two vortices at positions rj and rji1 by their
displacement Rj = I'j+1 — Ij and their cenfer of voricity. The process is
applied iteratively.

Jacobi coordinates R for three vortices with corresponding reduced circulations
K are defined as:
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where r; are the vortex positions. WLOG, the center of vorticity can be placed
at the origin. We assume

I'y>1I9 >0.

Sign Conditions:

>0,if I3>0 o I'g<—-I7—-19;

K1 > 0;, Ko =
<0,if —I'1-T9<Ig<O.

Il. Nambu Dynamics

We use Nambu brackets for reformulating dynamics:
F={F,0%H), {FGK)=VF-(VGxVK),

where the conserved quantity ® is defined by:
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ZZ2+ X2 +Y2, ifig > 0.

Hamiltonian and Angular Impulse in Jacobi-Nambu

In Jacobi coordinates, the Hamiltonian H and angular impulse ® are:
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Dynamics Based on i, Sign

e ko < O : Represents a two-sheeted hyperboloid in (X, Y, Z, ®) coordinates.
e Ko > O : Represents a sphere in (X, Y, Z, ®) coordinates.

Evolution Equations

The system’s dynamics are given by:
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(T1,T2,Ts) = (-2,-2,5)  (I.T2.T3) = (3.1, 1)

The phase-sphere of the three-vortex system with ' = -2 and I = SL

e From Region 6 to Region 1: Equilibrium points change from centers to saddles
when vortices move from Region 6 to Region 1.

e The equator Y = 0, representing collinear vortex configurations, and the
meridians, corresponding fo isosceles triangle formations.

e Our coordinate system’s phase planes are easier to understand and visualize
when the vortices are collinear.

An example from Region 2: | = 8
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Phase planes for I = g.
From Region 2 to Region 3:
e ® < 0, the nature of the singularity does not change.

e For ® = 0, the families of periodic orbits for I = g collapses when I" = %

e For ® > 0, the equilibria intersecting at the separatrix for I' = 8 goes off to
infinity when " = 2.

Vortex Collapse': T" = %
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The phase planes for vortex-collapse at I’ = 5.
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From Region 3 to Region 4 (d):

e ® < 0, the nature of the singularity at the origin does not change, but new
equilibria appears at the separatrix.

eFor® =0, theline Y = Ois singular from I = % tol = 1.

e For ® > 0, the equilibria at the separatrix go off to +oco, leaving with one
equilibrium (collinear state) at the origin.

e The phase planes shows the Direct sc:cn’r’rering2 (dash-dot) and Exchange
Scattering (dash).

Vortex-Dipole Scattering Problem>: I = 1
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The XY phase planes of system when (I'1,19,1'3) = (1,1, —1). (a) The case
® < 0 with singularity (point) and triangular configurations at the intersections
of the thick curves. (b) The case ® = 0. The gray line Y = O is singular. (c) the
case ® > 0 with collinear equilibrium at the separatrix intersection.

Four-vortex interaction with zero net circulation

Coordinate systems (2, 3) reduce the four-vortex problem to a three-vortex
problem. Integrability conditions for four interacting point vortices are:

e The linear impulse of the system is zero under the assumption that
I'y+I9+13+#0.

e The net circulation of the four vortices is zero,i.e,I'1 + 19 + 13 +14 = 0.

We use Jacobi coordinates for the four-vortex system, normalize it, and obtain
the Hamiltonian for the system.
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