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Note: Equation and figure numbers refer to numbering in the published paper. Local equa-
tion and figure labels begin with the letters “SM.”

In this supplement, calculate the change in angle Ao on trajectories with initial condi-
tions as t — —oo given in Fig. 6. The result is equivalent to one calculated in the supple-
mentary material to [3]. We include it for completeness and to highlight the connection
with the phase planes of Fig. 8.

To obtain an explicit integral form, we divide 4 r  from Eq. (30) by 9 ‘ar» given by Eq. (28b),
yielding 7 do‘ We remove the dependence on X and Z using the conservation laws (27)
and (25), and then replace H by its value given the initial condition in Fig. 6. We will use
O instead of p as the parameter in what follows because it gives somewhat simpler for-
mulas and can use Eq. (33) to rewrite this in terms of the parameter p defining the initial
conditions. Integrating this, we find

SM1 A > —8@%dY 8(©* —8@)dY
( ) o= / 2\, / 2. 2 2 2.
Yinin —|—® p4 Y @ Yinin Y + 06 8@) p4(Y ,@)
where

pa(Y%0) =142 (0> -40-8)Y? + (0 -8)@".

These are complete elliptic integrals [1]. To place them in standard form, we must first
factor p4(Y?;®). We plot its zero locus in Fig. SM1 as a function of ® and Y2. From this
image, it is clear that p4 can be factored as follows

(Y2 - (a—l—zb) )Y —(a—ib)?), a>0,b>0,if®<—1;
Y2 —a®)(Y?—b?), a>b>0,if —1<0®<0;
SM2 Y2, 0) = ( ’ ’
(SM2) P10 =1 (12 2\ y2 4 2), a>0,b>0,if0<0O<8;
(Y2 +a®)(Y? +b?), a>b>0,if8<0.

The first two cases correspond to the left phase plane of Fig. 8, the last two to the right
phase plane; the first and last cases correspond to direct scattering, and the second and
third to exchange scattering. The lower limit of integration is Yy, = O in the first and
fourth cases, while in the second and third Y,;, = a. Both integrals in Eq. (SM1) can be
evaluated with the help of references such as Gradshteyn/Ryzhik and Byrd/Friedman[1, 2].
It is quite possible that these expressions can be simplified further. For example, Lydon
derived formulas in which « is the sum of one complete elliptic integral of the first kind
and one of the third kind.
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FIGURE SM1. The solutions to p4(Y?,®) = 0, with the transitions be-
tween the factored form in Eq. (SM2) marked be vertical lines.

In the four regions, the constants evaluate to the following
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In each of the four p intervals, the scattering angle can be written as a linear combination
of complete elliptic integrals of the first kind

=

if —1<0<0;

if0<®<S;

if 8§ <O.

K(m):/l dx _/’z‘ de .

0 /1—=x)(1-m?) Jo \/1-msin’0

and the third kind

! dx B 3 de

)_/0 (1—nx2)\/(1—x2)(1—mx2)_/0 (1—nsin?0) /1 —msin?

(n,m

The convention is to define these functions for 0 < m < 1, though they are analytic for
all m except for a branch cut from m =1 to m = oo.
We report the values found in each of the cases.

DIRECT SCATTERING WITH p < —1

Here ® < —1, and

64v/0 —8(—K(m) +11(n,m))

Ao =
\4@((9—8+\/M) (®+\/(W)
with
1 4-0© 02 -40-38
m= — a

1
4———  and n=--———
2 2/02—80 2 20/02—-380
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EXCHANGE SCATTERING WITH —1 < p < —1
In this case —1 < ® < 0, and
40K (m)+ 81+ ®(H(n1 ,m) — H(nz,m))

Ao =
V—02+40+8/0+1+8

where
_ 8+40-0-8/0+1
T 8 r40- 02 8VO+ 1
_0-2+2/0+1
et 2/et1
_@+2-2V0+1
et 2/et1

and

THE BORDERLINE CASE p = f%

This is the case ® = 0 discussed in Fig. 9. Vortex 2 travels along a straight line with no
deflection, so the scattering angle is o = 0.
EXCHANGE SCATTERING WITH *% <p < %
Here 0 < ® < 8, and

-0?+40+8V0O+1+38

Ao =
2V0+1(0+2V/0+1+2

) (H(nl,m) — H(I’lz,l’)’l)),

where

1+®2—4®—8.

2 16V1-0 "
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=
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and

DIRECT SCATTERING WITH % <p
In this last case, ® > 8 and
A = cgK(m) + e 1 I1; (n1,m) 4 e 2I(no, m),

where
- 16vO+1 I 4 . _ 4(0+2V/0+1+2)
T O2—40-8+8/O+1 | @f2/O+1-2"" 2
40 —20° +407 + 640 + 64 —4/0 + 1 (0% — 80 — 16)
CK = — 2 , CII1 =
V0?—40+8/0+1-8 J(©-8)0 (0~ 408 (VoI T+1))

207 +1207 - 320 — 64 +4 (0> —16) VO + 1
\/(©-8)0° (0-4)0 -8 (VO 1+1))

and cpp =
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