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ABSTRACT

We introduce a new reduction of the motion of three point vortices in a two-dimensional ideal fluid. This proceeds in two stages: a change of
variables to Jacobi coordinates and then a Nambu reduction. The new coordinates demonstrate that the dynamics evolve on a two-
dimensional manifold whose topology depends on the sign of a parameter j2 that arises in the reduction. For j2 > 0, the phase space is
spherical, while for j2 < 0, the dynamics are confined to the upper sheet of a two-sheeted hyperboloid. We contrast this reduction with ear-
lier reduced systems derived by Gr€obli, Aref, and others in which the dynamics are determined from the pairwise distances between the vorti-
ces. The new coordinate system overcomes two related shortcomings of Gr€obli’s reduction that have made understanding the dynamics
difficult: their lack of a standard phase plane and their singularity at all configurations in which the vortices are collinear. We apply this to
two canonical problems. We first discuss the dynamics of three identical vortices and then consider the scattering of a propagating dipole by
a stationary vortex. We show that the points dividing direct and exchange scattering solutions correspond to the locations of the invariant
manifolds of equilibria of the reduced equations and relate changes in the scattering diagram as the circulation of one vortex is varied to
bifurcations of these equilibria.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0208538

I. INTRODUCTION
The mutually induced motion of point vortices in a two-

dimensional inviscid incompressible fluid is a classical topic in fluid
mechanics. The positions of the vortices are described by a Hamiltonian
system of ordinary differential equations that has been well studied for
over 150 years.1,2 These ODEs remain relevant because of their deep
connection to turbulence in Bose–Einstein condensates and other quan-
tum fluids, as summarized, for example, by Lydon et al.3

The point-vortex model idealizes a near-two-dimensional invis-
cid incompressible fluid in which the vorticity is confined to a finite
number of discrete points. Each such point vortex induces a velocity
that, in turn, causes the other vortices to move. It is a standard topic in
elementary fluid mechanics textbooks4 and is well covered in
Newton’s textbook devoted to the subject.1

Systems of three vortices are the smallest systems with time-
dependent inter-vortex distances. They are integrable yet display vari-
ous behaviors depending on the three circulations. Solutions to system
(1) evolve in a 2N-dimensional phase space, so reducing the dimen-
sionality is necessary to understand the dynamics. This paper aims to
introduce a geometric reduction to the three-vortex problem that

avoids introducing artificial singularities in the dynamics. Previously
used reductions introduce such singularities because they are incom-
patible with the topology of the manifold on which the dynamics
occur. This has made reasoning about the dynamics more difficult
because the singularities get in the way of applying standard geometric
phase-space arguments.

We apply this reduction to two cases of the three-vortex problem:
the motion of three identical vortices and the scattering of a propagat-
ing dipole by a third, initially stationary vortex. In each case, the new
form of the equations dramatically simplifies the application of
dynamical systems reasoning.

Helmholtz derived the model of point-vortex motion describing
the interaction of N point vortices, defined by the system of 2N ODEs
in 1858,5

dxi
dt

¼ "
XN

j 6¼i

Cj
yi " yjð Þ

jjri " rjjj2
;

dyi
dt

¼
XN

j6¼i

Cj
xi " xjð Þ

jjri " rjjj2
: (1)

Here, ri ¼ hxi; yii denotes the position of the ith point vortex, and
2pCi represents its circulation. The equations conserve an energy,
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Hðr1;…; rNÞ ¼ " 1
2

XN

i<j

CiCj log jjri " rjjj2: (2)

In 1876, Kirchhoff noted that system (1) has a Hamiltonian
formulation,6

dxi
dt

¼ 1
Ci

@H
@yi

;
dyi
dt

¼ " 1
Ci

@H
@xi

: (3)

System (1) has three well-known conservation laws, which we
write as

M ¼ hMx;Myi ¼
XN

i¼1

Ciri; and H ¼
XN

i¼1

Cijjrijj2: (4)

The quantities M and H are called the linear impulse and the angular
impulse, respectively. In the case that Ctot ¼

PN
i¼1 Ci 6¼ 0, then

r0 ¼ M=Ctot (5)

defines the location of the conserved center of vorticity. In this case,
taking r0 at the origin is natural.

The paper is organized as follows. In Sec. II, we introduce the
reduced equations that Gr€obli used to integrate the equations of
motion and Aref’s interpretation of this system as trilinear coordinates
for R2. This section concludes by discussing other reductions of the
three-vortex system in the existing literature. In Sec. III, we review
some ideas from Hamiltonian mechanics, including the Poisson
bracket. Section IV describes the reduction techniques, introducing
Jacobi coordinates in Sec. IVA and Nambu brackets in Sec. IVB
before applying these two methods to the three-vortex system in Sec.
IVC. After this, we use the reduced system to explore three cases of
vortex motion. First, in Sec. V, we consider the canonical case of three
identical vortices. Section VI considers vortices with circulation
ð1; 1;"1Þ, in which a vortex dipole is scattered by a third, initially sta-
tionary vortex of the same absolute circulation. This section contains a
review of the scattering problem. Using the reduced equations, we
derive an evolution equation for the instantaneous scattering angle.
We explain the scattering behavior, including the critical transition
between direct and exchange scattering, entirely in terms of phase
planes of the reduced problems. In Sec. VII, we extend the analysis to
the case where the initially stationary vortex has circulation C 6¼ 1. We
conclude in Sec. VIII with a discussion of the possible future applica-
tions of the coordinate reduction method. In the supplementary mate-
rial we integrate the equation for instantaneous evolution of the
scattering angle to derive a closed-form expression for this quantity.

II. GR€OBLI’S REDUCTION AND TRILINEAR
COORDINATES

Gr€obli’s 1877 doctoral thesis was the first to explore the complex
dynamics that can arise in systems of three or more vortices. He sim-
plified the three-vortex problem by deriving evolution equations for
the pairwise distances between vortices,7 finding that these satisfy

d
dt

‘223

‘231

‘212

0

BBB@

1

CCCA ¼ 4rA

C1 ‘"2
12 " ‘"2

31

! "
;

C2 ‘"2
23 " ‘"2

12

! "
;

C3 ‘"2
31 " ‘"2

23

! "
;

0

BBB@

1

CCCA; (6)

where ‘ij is the distance between vortices i and j, A is the area of the tri-
angle formed by the vortices, and r ¼ 61 gives the orientation of the
triangle spanned by the three vortices visited in numerical order, tak-
ing the valueþ1 if they appear in clockwise order and –1 if counter-
clockwise. Since the area of a triangle can be obtained from the side
lengths using Heron’s formula,

A ¼ 1
4

2‘212‘
2
23 þ 2‘223‘

2
31 þ 2‘231‘

2
12 " ‘412 " ‘423 " ‘431

! "1=2
;

this is a closed system.
System (6) leads easily to a conservation law,

C1C2‘
2
12 þ C2C3‘

2
23 þ C3C1‘

2
31 ¼ 3LC1C2C3: (7)

The constant L may also be obtained by an appropriate combination
of the constants defined in Eq. (4) and is proportional to H if the cen-
ter of vorticity r0 is taken at the origin. Depending on the strengths of
the three vortices, this quadratic invariant may or not be positive defi-
nite, which has consequences for the dynamics. Using this conserva-
tion law to eliminate one variable, say ‘31, Gr€obli reduced the system
to quadratures. This system and others derived from it are used in
most subsequent studies of the three-vortex problem,8–18 a history that
Aref and his collaborators researched extensively.2,19 We have trans-
lated Gr€obli’s dissertation into English and posted it on arXiv.org.20

For L 6¼ 0, Aref defines new variables,

b1 ¼
l223
C1L

; b2 ¼
l231
C2L

; b3 ¼
l212
C3L

; (8)

which must then satisfy, by Eq. (7),

b1 þ b2 þ b3 ¼ 3:

These may be interpreted as trilinear coordinates for the plane. That is,
given three points p1, p2, and p3 that form an equilateral triangle of
height 3, any point in the plane is uniquely specified by the triplet of
signed distances bj from this point to the lines containing sides j of the
triangle, as illustrated in Fig. 1(a). This has precedent in earlier works
of Synge and Novikov,9,10 which use a trilinear coordinate system
somewhat different from Aref’s.

For L¼ 0, we may omit the factor of L"1 from the definition of
the trilinear coordinates in Eq. (8) and find instead

b1 þ b2 þ b3 ¼ 0:

The dynamics of the trilinear coordinates bj describe the motion
of a point in the plane. Since coordinates ‘ij represent the sides of a tri-
angle, they must satisfy the triangle inequality, and not all triples repre-
sent physical configurations that satisfy this constraint. Let
Dphys & R3 denote the domain of physical configurations. Each point
on its interior represents two distinct phase points related by mirror
symmetry. The boundary @Dphys consists of collinear configurations
of the three vortices, and Aref showed it describes a conic section in
the plane. It is an ellipse for certain sets of circulations; for others, it is
a hyperbola. Figure 1 shows three such images. Panel (a) is the phase
diagram for circulation values (1, 1, 1), and the trajectories (level sets
of a rescaled Hamiltonian) are confined to lie inside the circle, which is
interior and tangent to the triangle formed by the three axes of the tri-
linear coordinate system. The phase diagram for circulations
ð1; 1;"1Þ is shown in the phase diagram for circulations ð1; 1;"1Þ for
L 6¼ 0 in panel (b) and for L¼ 0 in panel (c). In the first, Dphys is
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bounded by a circle; in the second, a hyperbola; and in the third, the b1
and b2 axes. These correspond to Figs. 2, 4, and 5 in Ref. 8.

We briefly summarize the reasoning Aref uses to interpret these
figures. The evolving vortex configurations move along level sets of the
Hamiltonian in the shaded Dphys regions. Components of these level
sets outside Dphys have no physical meaning. When a trajectory
reaches @Dphys, the three vortices are collinear. The motion passes
through the collinear configuration and continues on the phase dia-
gram by reversing direction and retracing its path. Thus, each point in
Dphys corresponds to two configurations of opposite orientation.
Points where trajectories are tangent to @Dphys correspond to collinear
relative equilibria, and the orbits connected to them are their stable
and unstable manifolds.

Panel (b) shows the phase diagram for circulations ð1; 1;"1Þ and
L 6¼ 0, for which @Dphys is a hyperbola. The portions of curves lying
outside the boundary are nonphysical. Trajectories that cross @Dphys
transversely immediately reverse direction and retrace the same path.
Trajectories tangent to @Dphys from the interior are invariant mani-
folds, and their points of tangency are hyperbolic fixed points. When
L¼ 0, the triangle in panel (b) shrinks to a point, and the two regions
bounded by hyperbolas become wedges. The dynamics on the upper
wedge ofDphys is shown in panel (c).

Points on @Dphys in Fig. 1 correspond to collinear arrangements.
Such arrangements are common: many families of periodic orbits pass
through such states twice per period, and three of the five possible rig-
idly rotating configurations of three vortices are collinear. The evolu-
tion equations are singular on @Dphys due to the square root that
appears in Heron’s formula. Thus, linearization fails, and even finding
the linear stability of the collinear states is difficult. The singularity of
the reduced ODE system is an artifact of the reduced coordinate sys-
tem. It is not present in the vortex motion equations (1), which are

singular only at singularities of the Hamiltonian (2), i.e., when two or
more vortices occupy the same location.

The images in Fig. 1 are phase planes. Still, the above-mentioned
considerations show that reading the dynamics from this phase plane
takes more effort than from a standard one. Certain information, like
the stability of collinear fixed points, is not obtainable in this representa-
tion. Previous studies have approached different aspects of three-vortex
dynamics using various reduction approaches. The first is Conte’s 1979
Th"ese d’#Etat, which appeared only as a technical report until its 2015
publication.21 This reduces the system to an evolution equation for a sin-
gle complex parameter f, which, according to the authors, describes the
shape of the triangle formed by the three vortices. The authors study
many aspects of the dynamics using this reduction, but we have found
the change of variables difficult to interpret. Tavantzis and Ting used
Synge’s trilinear coordinates to make a detailed study of the dynamics’
dependence on the circulation of the three vortices,11 but this has similar
problems to Aref’s trilinear formulation. In 2009, Aref returned to the
stability of collinear arrangements and introduced yet another reduc-
tion.22 This algebraic approach describes only the relative equilibria and
does not apply to the dynamics more broadly.

Other reductions have included the angles between the triangle’s
edges. For example, Krishnamurthy derived a system for the three
angles plus the radius of the circle circumscribing the triangle,23 and
Makarov derived a phase-plane representation for one side-length and
one angle.24 Stremler derived an especially useful system of equations,
noting that since the interior angles of a triangle must sum to p, they
can be used as a trilinear coordinate system.25 Since all interior angles
must be positive, the physical domain coincides with the triangle’s
interior, and collinear states occur at the triangle’s vertices. The vertices
are singular since all collinear configurations with the same central
vortex degenerate to a single point, including any collinear relative
equilibria. Thus, this coordinate system runs into difficulties near col-
linear arrangements, mirroring the weakness of trilinear coordinates.

III. FURTHER MATHEMATICAL PRELIMINARIES
The Poisson bracket used to describe the dynamics of N point

vortices is defined by

fFðrÞ;GðrÞg ¼
XN

i¼1

1
Ci

@F
@xi

@G
@yi

" @F
@yi

@G
@xi

# $
; (9)

where

r ¼ x
y

# $
; and x; y 2 RN :

Together with the chain rule, this implies that if r evolves according to
Eq. (3), any function FðrÞ evolves according to

dF
dt

¼ fF;Hg: (10)

Due to the factor of 1
Ci
in these equations, Hamiltonian system (3)

is not in canonical form. It may be canonically normalized by intro-
ducing variables

qi ¼
ffiffiffiffiffiffiffi
jCij

p
xi and pi ¼

ffiffiffiffiffiffiffi
jCij

p
signðCiÞyi; (11)

which renders both the equations and the Poisson brackets into the
standard forms

FIG. 1. Phase diagrams in trilinear coordinates. Solid black lines are level sets of
the Hamiltonian, but only the portions of these curves in Dphys, shown here as
shaded regions, are meaningful. Portions of the level sets lying outside them have
no physical meaning. Collinear relative equilibria are marked ' and equilateral trian-
gle relative equilibria •. Heavier curves are separatrices. (a) Vortices of circulations
(1, 1, 1). (b) Vortices of circulation ð1; 1;"1Þ with L 6¼ 0. (c) Vortices of circulation
ð1; 1;"1Þ with L¼ 0.
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dqi
dt

¼ @H
@pi

;
dpi
dt

¼ " @H
@qi

; (12)

and

fF;Gg ¼
XN

i¼1

@F
@qi

@G
@pi

" @F
@pi

@G
@qi

# $
:

A. The three-vortex system
In this paper, we confine our attention to a system of three vorti-

ces with non-vanishing total circulation. The dynamics conserve the
Hamiltonian

H ¼ "C1C2

2
log jjr1 " r2jj2 "

C1C3

2
log jjr1 " r3jj2

" C2C3

2
log jjr2 " r3jj2;

the center of vorticity

r0 ¼
C1r1 þ C2r2 þ C3r3

C1 þ C2 þ C3
;

and the angular impulse

H ¼ C1jjr1jj2 þ C2jjr2jj2 þ C3jjr3jj2:

Without loss of generality, we can assume that

C1 ( C2 ( C3 and C2 > 0: (13)

IV. REDUCTION BY STAGES
Choosing the proper coordinate system may significantly clarify

the study of a particular phenomenon, but how to construct such a
coordinate system may not be obvious. In the ideal case, any such
coordinates should be easy to interpret, which implies, among other
things, that they should have a clear meaning and be invertible so that
we may reconstruct the original motion from the transformed motion.
We insist on using canonical changes of variables, those which pre-
serve the Hamiltonian form of the evolution equations. The reduction
proceeds in two steps. The first change of variables to Jacobi coordi-
nates is canonical, while the second change, a Nambu reduction,
requires us to generalize the framework of Hamiltonian systems. In
between, we apply a normalization of the form (11).

A. Jacobi coordinate reductions
Jacobi coordinates are a standard tool for reducing n-body prob-

lems, especially in celestial mechanics, and are discussed at length in
Jacobi’s 1866 Lectures on Dynamics.26 The method is straightforward
and underlies the reductions used in many studies of vortex interac-
tions.27 Still, the only point-vortex paper we have found that references
the method by name is a recent one by Luo et al.28

The Jacobi coordinate transformation consists of iteratively
applying the change of variables,

~r1 ¼ r1 " r2; ~C1 ¼
C1C2

C1 þ C2
;

~r2 ¼
C1r1 þ C2r2
C1 þ C2

; ~C2 ¼ C1 þ C2;
(14)

where C1 þ C2 6¼ 0.

The variables ~C1 and ~C2 are known, respectively, as the reduced
circulation and total circulation of the pair.

Solving for r1 and r2 and substituting these values back in the
Hamiltonian (2) yields a new Hamiltonian Hð~r1;~r2; r3;…; rNÞ and
evolution equations of the form (3) with circulations ~C1; ~C2;C3;…;
CN . We then apply a similar transform to Eq. (14) to ~r2; r3; ~C2, and
C3, repeating the process for each pair until rN has been transformed.
The transformed circulations redefine the Poisson bracket (9) and thus
the evolution equations (10).

To prevent division by zero in the reduction procedure, we
assume that

Xk

j¼1

Cj 6¼ 0; for all k ) N: (15)

For k¼N, this represents an assumption about the set of vortices,
while for k<N, it is merely an assumption about their labels’ ordering
and is consistent with assumption (13) and (14). Because the mass of
the jth body, which serves as the analog to the circulation Cj, must be
positive, condition (15) is never an issue in the gravitational problem.

We assign the names Rj to the final transformed variables and jj
to the transformed circulations. Then, R1 is the displacement from r2
to r1, and, similarly, R2 is the displacement from r3 to the center of
vorticity of the r1; r2 subsystem. A similar definition holds for the
remaining Rj with j<N, whereas RN coincides with our previously
defined r0, the center of vorticity defined in Eq. (5). Since this quantity
is conserved, we have reduced the dimension of the phase space by
two.

B. Nambu brackets
The reduced equations of motion we derive will make use of a

Nambu bracket, which takes the following form:

fF;GgC ¼ "rC * rF +rGð Þ;

where C; F;G : R3 ! R, and C is a distinguished function or
Casimir. The Nambu bracket obeys all the defining properties of a
Poisson bracket. Namely, it is a skew-symmetric bilinear operator that
obeys the Leibnitz rule and the Jacobi identity. Nambu introduced it in
197329 to generalize Hamiltonian mechanics to systems with three-
dimensional phase space. Holm et al.’s textbooks provide an excellent
overview of the mathematical theory and many applications to prob-
lems in optics, classical mechanics, and fluid dynamics.30–32

For a system with coordinates (X, Y, Z), the system of evolution
equations analogous to system (12) is

d
dt

X
Y
Z

0

@

1

A ¼ rC +rH; (16)

under which any function FðX;Y ;ZÞ evolves according to

dFðX;Y ;ZÞ
dt

¼ fF;HgC

in analogy with Eq. (10).
M€uller and N#evir showed that Gr€obli’s reduced equations could

be reinterpreted as Nambu dynamics,13 but their construction does
not solve the problem of those coordinates’ singularity. This
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formulation was subsequently applied to study self-similar collapse in
a generalized point-vortex problem.33

The Nambu formulation of mechanics is often used in situations
for which polar coordinates or their Hamiltonian equivalents may be
applied. For example, Luo et al. arrived at an equation equivalent to
Eq. (18) below and then introduced polar coordinates. Polar coordi-
nates introduce a singularity at the origin, similar to the singularity of
the trilinear coordinate system. The more modern Nambu formulation
avoids this. This point of view is well articulated in the aptly named
lecture notes in Ref. 34.

C. Application to the three-vortex system
The Jacobi coordinates and the virtual circulations for the three-

vortex problem under assumptions (13) and (15) are

R1 ¼ r1 " r2; j1 ¼
C1C2

C1 þ C2
;

R2 ¼
C1r1 þ C2r2
C1 þ C2

" r3; j2 ¼
ðC1 þ C2ÞC3

C1 þ C2 þ C3
;

R3 ¼
C1r1 þ C2r2 þ C3r3

C1 þ C2 þ C3
; j3 ¼ C1 þ C2 þ C3:

(17)

Choosing the center of vorticity R3 as the origin, we may invert these
equations to find

r1 ¼
C2

C1 þ C2
R1 þ

C3

C1 þ C2 þ C3
R2;

r2 ¼
C3

C1 þ C2 þ C3
R2 "

C1

C1 þ C2
R1;

r3 ¼ " C1 þ C2

C1 þ C2 þ C3

# $
R2:

In these coordinates, the Hamiltonian and angular impulses are
then

H ¼ "C1C2

2
log jjR1jj2 "

C2C3

2
log jjR2 "

j1
C2

R1jj2

" C1C3

2
log jjR2 þ

j1
C1

R1jj2; (18)

and

H ¼ j1jjR1jj2 þ j2jjR2jj2:

For the remainder of the paper, we assume that

C1 ( C2 > 0:

This is generic as two of the vortices must have circulations of match-
ing signs, and we may assume they are positive by reversing the direc-
tion of time if necessary. Under this assumption, j1 > 0, but j2 may
take either sign, which plays an essential role in the following analysis.

1. The case j2>0

Under assumptions (13) and (15), the virtual circulation j2 is
positive if C3 > 0 or C3 < "C1 " C2. In both these cases, Aref finds
that the physical domainDphys in the trilinear coordinate system is the
interior of an ellipse.8 In the first case, the ellipse lies inside the central

triangular region as in Fig. 1(a); in the second, it lies in one of the
unbounded regions of the figure.

We normalize the system using Eq. (11) and the values of jj from
Eq. (17), which gives

Q1 ¼
ffiffiffiffiffi
j1

p
X1; P1 ¼

ffiffiffiffiffi
j1

p
Y1; Q2 ¼

ffiffiffiffiffi
j2

p
X2; P2 ¼

ffiffiffiffiffi
j2

p
Y2: (19)

Defining Ri ¼ hQi; Pii and R i ¼ hQi;"Pii, which we can treat
as complex variables, the Hamiltonian becomes

H ¼ "C1C2

2
log jjR1jj2 "

C2C3

2
log

&&&&

&&&&R2 "
ffiffiffiffiffiffiffiffiffiffi
j1j2

p

C2
R1

&&&&

&&&&
2

" C1C3

2
log

&&&&

&&&&R2 þ
ffiffiffiffiffiffiffiffiffiffi
j1j2

p

C1
R1

&&&&

&&&&
2

; (20)

and the angular impulse becomes

H ¼ jjR1jj2 þ jjR2jj2:

Both H and H are invariant under the S1 transformation ðR1;R2Þ !
ðeiuR1; eiuR2Þ for arbitrary phase u and depend only on quadratic
monomials. Holm suggests the following coordinates for such
dynamics:30

Z ¼ jjR1jj2 " jjR2jj2; X þ iY ¼ 2R1R2: (21)

These new coordinates satisfy

H2 ¼ Z2 þ X2 þ Y2 (22)

and give a Hamiltonian,

HðX;Y;Z;HÞ ¼ " C1C2

2
log

Z þH
2j1

# $

" C2C3

2
log

H" Z
2j2

þ j1ðZ þHÞ
2C2

2
" kX

C2

 !

" C1C3

2
log

H" Z
2j2

þ j1ðZ þHÞ
2C2

1
þ kX

C1

 !
;

where k2 ¼ j1
j2
.

The conservation law (22) provides a geometric interpretation of
Aref’s observation that the physical domain Dphys is bounded by an
ellipse: the natural phase space of the system is the sphere S2. A simple
calculation shows that

Y ¼ "2
ffiffiffiffiffiffiffiffiffiffi
j1j2

p
R1 + R2 ¼ ðr2 " r1Þ + ðr3 " r1Þ;

so that the great circle Y¼ 0, which we will call the equator, corre-
sponds to the set of collinear configurations, i.e., to @Dphys in the trilin-
ear coordinates. In the present coordinate system, the dynamics are
regular along this curve.

It is then an exercise in the chain rule to show that the system
evolves under system (16) with C ¼ 2H2 in the coordinates defined by
Eq. (21). Since @H

@Y ¼ 0, this yields

dX
dt

¼ 4Y
@H
@Z

;

dY
dt

¼ 4Z
@H
@X

" 4X
@H
@Z

;

dZ
dt

¼ "4Y
@H
@X

:

(23)
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2. The case j2<0

The virtual circulation j2 is negative if "C1 " C2 < C3 < 0. In
this, Aref finds that the physical domain Dphys in the trilinear coordi-
nate system is bounded by a hyperbola.8

We normalize the system using Eq. (11) and the values of jj from
Eq. (17), which gives

Q1 ¼
ffiffiffiffiffi
j1

p
X1; P1 ¼

ffiffiffiffiffi
j1

p
Y1; Q2 ¼

ffiffiffiffiffiffiffiffiffi
"j2

p
X2; P2 ¼"

ffiffiffiffiffiffiffiffiffi
"j2

p
Y2:

(24)

Defining Rj and R j as done between Eqs. (19) and (20) we find
Hamiltonian,

H ¼ "C1C2

2
log jjR1jj2 "

C2C3

2
log

&&&&

&&&&R2 "
ffiffiffiffiffiffiffiffiffiffiffiffiffi"j1j2

p

C2
R1

&&&&

&&&&
2

" C1C3

2
log

&&&&

&&&&R2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi"j1j2

p

C1
R1

&&&&

&&&&
2

; (25)

and angular impulse

H ¼ jjR1jj2 " jjR2jj2:

Both H and H are invariant under the S1 transformation
ðR1;R2Þ ! ðeiuR1; e"iuR2Þ for arbitrary phase u and depend only
on quadratic monomials. Holm suggests the following coordinates for
such dynamics:30

Z ¼ jjR1jj2 þ jjR2jj2;
X þ iY ¼ 2R1R2:

(26)

These coordinates satisfy

H2 ¼ Z2 " X2 " Y2; (27)

which we know to be conserved. Thus, the trajectory
ðXðtÞ;YðtÞ;ZðtÞÞ is confined to a hyperbola of two sheets, which
degenerates to a cone when H ¼ 0. Because Z ( 0 by definition, the
trajectories lie on the upper sheet. As in the j2 > 0 case, Y¼ 0 when
the vortices are collinear, so that Eq. (27) is the hyperbola that forms
@Dphys in the trilinear coordinates.

The Hamiltonian becomes

HðX;Y;Z;HÞ ¼ " C1C2

2
log

Z þH
2j1

# $

" C2C3

2
log

Z "H
2j2

þ j1ðZ þHÞ
2C2

2
" lX
C2

 !

" C1C3

2
log

Z "H
2j2

þ j1ðZ þHÞ
2C2

1
þ lX
C1

 !
; (28)

where l2 ¼ "j1
j2
.

The system evolves under Eq. (16) with C ¼ 2H2. Since @H
@Y ¼ 0,

this yields

dX
dt

¼ 4Y
@H
@Z

;

dY
dt

¼ "4Z
@H
@X

" 4X
@H
@Z

;

dZ
dt

¼ "4Y
@H
@X

:

V. THE SYSTEM OF THREE IDENTICAL VORTICES
We illustrate the reduction for the case of three equal circulations

C1 ¼ C2 ¼ C3 ¼ 1. In this case, j1 ¼ 1
2 and j2 ¼

2
3 > 0, so the reduc-

tion follows Sec. IVC1 and

H ¼ " 1
2
log ðHþ ZÞ " 1

2
log H" Z

2
"

ffiffiffi
3

p
X

2

# $

" 1
2
log H" Z

2
þ

ffiffiffi
3

p
X

2

# $
:

This Hamiltonian is unchanged under rotations of the XZ plane by
6 2p

3 , which correspond to permutations of the vortex labels. The
dynamics are equivariant under a rescaling of H, so we may take
H¼ 1 without loss of generality. The dynamics are singular at the
points on the sphere where the arguments of the logarithms defining
H vanish, which occur at three points evenly spaced around the equa-
tor, here given by Y¼ 0,

ðX;Y;ZÞ ¼ ð0; 0;"1Þ and ðX;Y;ZÞ ¼ 6

ffiffiffi
3

p

2
; 0;

1
2

# $
:

These are points where two of the three vortices coincide, and the rota-
tional frequencies of the closed orbits surrounding these points diverge
as they approach the singular points. Each point on the three meri-
dians running from the north to the south pole through a singularity
corresponds to a “tall” isosceles triangle with legs longer than its base.

The system has five equilibria. Three of them lie on the equator,

ðX;Y;ZÞ ¼ ð0; 0; 1Þ and ðX;Y ;ZÞ ¼ 6

ffiffiffi
3

p

2
; 0;" 1

2

# $
:

These alternate with the three singular points as one moves around the
equator. They correspond to collinear relative equilibria, each with one
of the three vortices at the midpoint of a line segment connecting the
other two. The other two, which lie at the poles

ðX;Y ;ZÞ ¼ ð0;61; 0Þ

correspond to rigidly rotating equilateral triangular arrangements.
Each point on the three meridians running from the north to the south
pole through a saddle point on the equator corresponds to a “wide”
isosceles triangle whose base is longer than its legs.

Because the dynamics defined by system (23) are regular, the lin-
ear stability of all relative equilibria is determined by the eigenvalues of
the Jacobian. We include the following elementary calculations to
demonstrate their straightforwardness compared to previous formula-
tions of the problem. The Jacobian matrices at, respectively, a triangu-
lar relative equilibrium and a collinear one are

Jð0; 1; 0Þ ¼
0 0 3
0 0 0
"3 0 0

0

@

1

A; and Jð1; 0; 0Þ ¼
0 3 0
9 0 0
0 0 0

0

@

1

A:

Each has a null eigenvector corresponding to a perturbation in the
radial direction, i.e., to a change to the conserved angular impulse H.
The first has eigenvalues 63i and is neutrally stable. The second has
eigenvalues63

ffiffiffi
3

p
and is a saddle.

The global phase space for three identical vortices is shown in
Fig. 2. When this sphere is viewed from above the north pole, it
reduces to Aref’s phase plane shown in Fig. 1(a). The three collinear
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states are saddle points, and their invariant manifolds coincide in six
heteroclinic orbits. The periodic orbits can be classified into two types:
two families of orbits that encircle the triangular configurations at the
poles and three families that surround the singular points on the
equator.

Figure 3(a) shows a periodic orbit from the family surrounding
the north pole with an initial point on the meridian between the Y axis
and the Z axis in Fig. 2 close to the saddle point. In laboratory coordi-
nates, it is a relative periodic orbit whose initial condition is a wide
isosceles triangle in which the vortices are nearly collinear. The figure
shows one period of motion on the sphere, which crosses all six isosce-
les meridians but remains in the upper hemisphere.

Figure 3(b) shows a periodic orbit from the family surrounding a
singular point on the equator. The initial condition is collinear, with
the points nearly equally spaced, corresponding to a point on the equa-
tor near a saddle point. Two of the vortices alternate, moving to the
center as the orbit approaches two of the saddle points in turn.

VI. THREE VORTICESWITH CIRCULATIONS ð1; 1;21Þ
We let C1 ¼ C2 ¼ "C3 ¼ 1, in which case the transformed cir-

culations are

j1 ¼
1
2
; j2 ¼ "2; j3 ¼ 1:

Because j2 < 0, this system is reduced to Nambu form using Eqs.
(24)–(26). The Hamiltonian reduces to

H ¼ " 1
2
log ðZ þHÞ þ 1

2
log Z2 " X2ð Þ; (29)

and the angular impulse is given by Eq. (27).
The evolution equations are

dX
dt

¼ "2Y
Z þH

þ 4ZY
Z2 " X2 ; (30a)

dY
dt

¼ 2X
Z þH

; (30b)

dZ
dt

¼ 4XY
Z2 " X2 : (30c)

It is worth relating the ðX;Y ;Z;HÞ coordinate system for this
problem to the physical coordinates, and we find a straightforward
geometric interpretation. Consider Fig. 4. By assumption (5), the cen-
ter of vorticity lies at the origin, and we let vj denote the vector from
the origin to vortex j. Relation (5) implies that v3 ¼ v1 þ v2 so that
the positions of the three vortices and the origin form a parallelogram,
a fact mentioned by Gr€obli,7 Sec. III. We let / be the angle from v1 to
v2. We then find by following through the sequence of changes of vari-
ables that

X ¼ "jjv1jj2 þ jjv2jj2;
Y ¼ 2 v1 + v2ð Þ * k ¼ 2jjv1jjjjv2jj sin/;

Z ¼ jjv1jj2 þ jjv2jj2;
H ¼ "2 v1 * v2 ¼ "2jjv1jjjjv2jj cos/:

(31)

A few observations on these coordinates follow:

• X is the signed difference between the lengths of v1 and v2, so
vanishes when the triangle of vortices is isosceles.

FIG. 3. Periodic orbits near separatrices (relative periodic orbits in physical coordi-
nates). (a) A periodic orbit in the upper hemisphere that makes close approaches to
all three saddle points but never crosses the equator. At all the numbered times,
corresponding to sixths of a period, the vortices form an isosceles triangle, the first
two of which are drawn. (b) A periodic orbit crosses the equator and closely
approaches saddle points. At numbered times, corresponding to quarter-periods,
the points alternate between collinear and isosceles arrangements.

FIG. 2. The phase-sphere of the three-vortex system with identical circulations, plot-
ted with transparency so trajectories on the rear are visible. The equator Y¼ 0,
where the vortices are collinear, and the meridians, where they form an isosceles
triangle, are indicated.
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• Y vanishes when the three vortices are collinear, which is not a
singularity of the coordinate system.

• For H¼ 0, cos/ ¼ 0, so at all times, the three vortices form a
right triangle, with vortex 2 at the right angle. Then, trivially,
they cannot be collinear, so Y 6¼ 0, which can also be deduced
from the singularity of the Hamiltonian (29) when H¼ 0.

A. Scattering
The most noteworthy behavior for this set of circulations is scat-

tering: two vortices with circulations of identical magnitude but oppo-
site orientation form a dipole that propagates at constant velocity
perpendicular to the line joining them. The presence of a third vortex
deflects or scatters this motion. Three such scattering solutions are
shown in Fig. 5. While these three solutions obey very similar condi-
tions before the interaction (as the time t ! "1), their behavior as
t ! 1 is quite different. Subfigures (a) and (b) show exchange scatter-
ing events: the dipole that exits the collision region is not composed of
the same two vortices as the dipole that entered. By contrast, subfigure
(c) displays direct scattering; the same two vortices form the dipole
before and after the interaction.

A fundamental question about this scattering is whether a given
initial condition leads to direct or exchange scattering. The second
question is the change in angle Da between the incoming dipole and
the exiting dipole. Aref derived a formula that answers both questions
about scattering, but this is based entirely on integrating the ordinary

differential equations and not on the interpretation of the phase dia-
gram in Fig. 1(b).8 Aref’s plot of the dependence of Da on initial con-
tains a sign error that was fixed by Lydon et al.3

The reduced system of equations allows us to apply phase space
reasoning directly to the scattering problem, so we review it here. A
schematic of the scattering experiment is shown in Fig. 6. A dipole con-
sisting of a positive-circulation vortex at position r1 ¼ h"L; qþ d

2i,
where L , 1, and a negative-circulation vortex at position
r3 ¼ h"L; q" d

2i propagates to the right toward a positive-circulation
vortex at position r2 ¼ h0;"di. These are chosen to set r0 ¼ 0.
Without loss of generality, we take d¼ 1.

Eventually, vortex 3 escapes to infinity as part of a dipole. We call
the case when the escaping dipole comprises vortices 1 and 3 a direct
scattering event and the case when it comprises vortices 2 and 3 an
exchange scattering event.

Examples are shown in Fig. 5. The initial conditions are posed as
in the schematic, showing exchange scattering in panels (a) and (b)
and direct scattering in panel (c). Since vortex 3 has opposite circula-
tion to the two others, it must be a part of both the entering and exiting
dipoles. We define the scattering angle Da as its change of heading; see
Eq. (32). Figure 7 shows the scattering angle as a function of the offset
q, with the scattering angles of the three solutions shown in Fig. 5
marked.

If jqj , 1, the isolated vortex will scarcely deflect the dipole, so
direct scattering will occur. Previous authors have determined, via
fairly involved calculations, that exchange scattering occurs for
"1 < q < 7

2, and direct scattering outside this interval.3,8 The points
q ¼ "1 and q ¼ 7

2 separate distinct behavior domains in this system,
and the scattering angle diverges as q approaches these values.

FIG. 4. Diagram used to interpret the ðX ; Y ; Z;HÞ coordinates. See the text for an
explanation.

FIG. 5. Three solutions of the scattering problem showing (a) exchange scattering for q ¼ "0:999. (b) Exchange scattering for q ¼ 2:5. (c) Direct scattering for q ¼ 3:8. The
vortex dipole arrives from "1 traveling parallel to the x axis, and vortex 3 sits at rest at the marked point as t ! "1.

FIG. 6. Setup of the scattering problem. The dipole formed by vortices 1 and 3
propagates toward the target, vortex 2.
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B. Recovering some angles
Equation (31) shows that the ðX;Y ;Z;HÞ variables are insensi-

tive to a rigid rotation of the parallelogram in Fig. 4 about the origin
and will not allow us to compute the scattering angle. Therefore, we
introduce a canonical form of polar coordinates (the action-angle vari-
ables of a harmonic oscillator) to recover this angle.

Returning to the coordinatesR1 andR2 used in Eq. (25), we let

R1 ¼ h
ffiffiffiffiffiffi
2I1

p
sin h1;

ffiffiffiffiffiffi
2I1

p
cos h1i;

R2 ¼ h
ffiffiffiffiffiffi
2I2

p
sin h2;

ffiffiffiffiffiffi
2I2

p
cos h2i:

Two observations are important here. First, the Hamiltonian
depends on the angles only through the combination h1 þ h2. Second,
the vector v3 in the figure has argument h2 " p

2. Therefore, we make
one additional canonical transformation,

w1 ¼ h1 þ h2; w2 ¼ h2; J1 ¼ I1; J2 ¼ I2 " I1:

In these variables, the Hamiltonian takes the following form (again
ignoring additive constants):

H ¼ 1
2
log 4J21 sin

2w1 þ 4J1J2 sin2w1 þ J22
! "

" 1
2
log J1ð Þ:

Since the equation is cyclic in w2, the action J2 ¼ "H=2 is conserved.
The dynamics of J1 and w1 are equivalent to system (30). We may
recover the evolution of h2 ¼ w2 by integrating

_w2 ¼
2J1 sin2w1 þ J2

4J21 sin
2w1 þ 4J1J2 sin2w1 þ J22

along a scattering trajectory. In terms of the Nambu variables, this
becomes

_h2 ¼
2Y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ X2 þ Y2

p
" 2HX2

X2 þ Y2ð Þ H2 þ Y2ð Þ :

The angle just calculated describes the argument of v3 in Fig. 4,
which is distinct from the scattering angle a ¼ arg dz3

dt plotted in Fig. 7.
In terms of the reduced coordinates, we find that

da
dt

¼ " 8HY2

X2 þ Y2ð Þ H2 þ Y2ð Þ : (32)

Integrating this over a trajectory then gives Da. This calculation is
described in the supplementary material. It is equivalent to a calcula-
tion by Lydon and is included for completeness.3

C. Phase space of the ð1; 1;21Þ system
We first derive the fixed points and singularities of system (30)

before visualizing the system’s phase space. We set the right-hand sides
of system (30) to zero while enforcing the constraints (27) and Z ( 0.
Similarly, we find singularities where the argument of either logarith-
mic term in the Hamiltonian (29) vanishes, enforcing the same two
constraints. Which equilibria and singularities exist depends onH.

WhenH < 0, the system has two equilibria E6
tri and a singularity

S11 found by setting Z þH ¼ 0, which requires X ¼ Y ¼ 0. These
are

E6
tri ¼

0
6

ffiffiffi
3

p
H

"2H

0

B@

1

CA and S11 ¼
0
0

"H

0

B@

1

CA:

When H¼ 0, there are no equilibria, but the system is singular
when Z ¼ jXj, which requires Y¼ 0.

WhenH > 0, the system has a single equilibrium,

E"1 -
X0

Y0

Z0

0

B@

1

CA ¼
0
0
H

0

B@

1

CA;

and no singularities.
The fixed points E6

tri and E"1 are relative equilibria in the labora-
tory coordinates, i.e., they are equilibria when viewed in an appropriate
rotating reference frame. We may interpret them using Eq. (31). For
both equilibria, X¼ 0 implies jjv1jj ¼ jjv2jj. The equilibrium E6

tri
exists for H < 0. For the equilibrium E6

tri, the value of the component
Z ¼ "2H implies that / ¼ 6 p

3 and the three vortices lie at the verti-
ces of an equilateral triangle, motivating the naming convention. The
equilibrium E"1 exists forH > 0. This implies / ¼ p so that the three
vortices are collinear with the two positive vortices equally spaced
from the negative vortex at the center. The subscript –1 indicates that
the vortex with circulation –1 sits at the center. By similar reasoning,

FIG. 7. The deflection of the angle of vortex 3 plotted as a function as the distance q, showing singularities at q ¼ "1 and q ¼ 7
2 as expected. The solid line is the result of

direct simulation, and the red dots are the formulas derived in the supplementary material. The points marked (a)–(c) correspond to the three simulations shown in Fig. 5.
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we find that at the singularity S11, the two vortices with circu-
lationþ 1 coincide, again motivating the notation.

By the conservation law (27), the phase space of system (30) is
the upper sheet of a two-sheeted hyperbola. We visualize the dynamics
by projecting this surface into the XY plane in Fig. 8. The conserved
angular impulse H is a bifurcation parameter, but up to scaling when
H 6¼ 0, there are only three possible phase planes.

For H < 0 in panel (a), the point at the origin is the singularity
S11. The two equilibria E6

tri sit on the Y axis and are saddle points
connected by a pair of homoclinic orbits. The two homoclines sur-
round a family of periodic orbits, which shrink to a point atS11. Each
corresponds to a hierarchical orbit in which the two positive vortices
orbit about each other rapidly, while their mutual center of vorticity
and the third vortex orbit each other; Gr€obli computed this orbit in
closed form and plotted it in Ref. 7, Fig. 1. As the diameter of these
closed orbits goes to zero, the rotation rate of this tightly bound pair
diverges, and the orbits approach the singularityS11. The unbounded
portions of the stable and unstable manifolds separate the remainder
of the phase plane into four unbounded quadrants. This will be impor-
tant for the scattering problem.

WhenH¼ 0 in panel (b), the entire X axis is singular, and all sol-
utions are confined to the upper or lower half-planes. For H > 0 in
panel (c), the collinear equilibrium E"1 at the origin is a saddle point.
Its invariant manifolds also separate the plane into four unbounded
quadrants.

The phase plane forH < 0 in panel (a) corresponds to the upper
disconnected component of Dphys in Fig. 1(b), the phase plane for
H¼ 0 in panel (b) to Fig. 1(c), and phase plane forH > 0 in panel (c)
to the lower disconnected component ofDphys in Fig. 1(b).

Finally, note that rescaling X and Y by jHj and t by jHj"1 (when
H 6¼ 0) shows that the dynamics for any negative (respectively, posi-
tive) value of H has a phase plane equivalent to that shown in panel
(a) [respectively, panel (c)].

D. Explaining the scattering
The analysis of Sec. VIC enumerated the ingredients needed to

explain the behavior of the three-vortex scattering problem setup in
Fig. 6. The most important features of a phase plane in organizing the
dynamics are the invariant sets: equilibria, periodic orbits, and their

stable and unstable manifolds, which form separatrices between
regions of distinct behavior. The goal of this section is to show that the
transitions between direct and exchange scattering at q ¼ "1 and
q ¼ 7

2 in Fig. 7 are due to these features.
The separatrices shown in Fig. 8 divide the phase plane into fami-

lies of trajectories with identical topology, and the topology of the
phase plane is determined, in turn, by the conserved parameter H.
Panel (a) depicts the case H < 0, where the energy level of the separa-
trices equals that of the rotating triangular configurations E6

tri, given by

EðE6
triÞ ¼

1
2
log ð"4HÞ: (33)

The energy in the two regions to the left and right of E6
tri (those

containing the X-axis) is lower than EðE6
triÞ, while the energy in the

regions above and below the separatrices is higher than EðE6
triÞ.

Panel (c) shows the case H > 0, where the energy level on the
separatrices equals that of the collinear equilibrium E"1, which we
compute to be

EðE"1Þ ¼
1
2
log

H
2
: (34)

The energy in the two regions to the left and right of E"1 (those con-
taining the X-axis) is lower than EðE"1Þ, while the energy in the
regions above and below the separatrices is higher than EðE"1Þ.

We must compare these energies with those of the pre-scattering
condition depicted in Fig. 6. In this arrangement, the center of vorticity
is at the origin, so we may compute the limiting behavior of X and Y
using the equations in Eq. (31). We directly compute that, independent
of L,

H ¼ 1þ 2q: (35)

We assume that as t ! "1; L ! 1, thus jjv1jj ! 1, while jjv2jj is
finite, so that X ! "1. This also implies that Y ! 1. Thus, for the
situation depicted in Fig. 6, trajectories in the phase planes depicted in
Fig. 8 arrive from infinity from the northwest direction heading
southeast.

Then, suppose the initial energy exceeds the separatrix energy. In
that case, the trajectory begins above the separatrix and crosses the line
X¼ 0, where dY

dt ¼ 0 before escaping to infinity in the northeast direc-
tion. Because X ! þ1 as t ! 1; jjv2jj must diverge, and this is an

FIG. 8. The XY phase planes of system (30). (a) The case H < 0 with singularity S11 (point) and triangular configurations at the intersections of the thick curves. (b) The
case H¼ 0. The gray line Y¼ 0 is singular. (c) The case H > 0 with collinear equilibrium E"1. Note that the contours are not evenly spaced level sets of the energy (29) but
were chosen to illustrate the topology clearly.
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exchange scattering event. At the instant the solution crosses, X¼ 0,
then jjv1jj ¼ jjv2jj at which point the vectors v1 and v2 form the legs
of an isosceles triangle.

If the initial energy lies below the separatrix energy, then the
trajectory begins below the separatrix. It will cross Y¼ 0 at which
point dX

dt ¼0. When Y¼ 0, sin/ ¼ 0, and the three vortices are col-
linear. Because X< 0 along the entire trajectory and X ! "1 as
t ! 1, then jjv1jj ! 1 and this solution represents a direct scat-
tering event.

ForH < 0, that is, for q < " 1
2, the critical energy is given by Eq.

(33), which, combined with Eq. (35), gives a critical energy,

q"crit ¼ "1: (36)

ForH > 0, that is, for q > " 1
2, the critical energy is given by Eq.

(34), which, combined with Eq. (35), gives a critical energy,

qþcrit ¼
7
2
: (37)

Figure 7 shows the deflection in the angle of vortex two following the
interaction is singular as q ! "1 and q ! 7

2 as expected.
To calculate the scattering angle, we must integrate Eq. (32) over

each scattering trajectory. This is equivalent to a calculation by Lydon
et al.,3 and we present it for completeness in the supplementary material.

We end this section by remarking that the values q¼ 1
(H ¼ "1), q ¼ " 1

2 (H¼ 0), and q ¼ 7
2 (H¼ 8) divide the space of

initial conditions into four intervals on which the behavior is qualita-
tively distinct. Gr€obli made the same observation (using a constant
k ¼ H=2) as did Lydon et al.,3,7 but without referencing a phase plane
to organize the orbits. Because both prior works focus on integrating
the ODE system via quadrature, these intervals are distinguished
mainly by the change in the algebraic forms of those integrals rather
than the phase space topology.

E. The borderline case H50
The approach taken here is especially illuminating for the transition

atH¼ 0 where Lydon noticed an algebraic change in the form of the inte-
grals but found no visible discontinuity in the scattering angle in Fig. 7.3

As q increases from "1 to 1, it crosses the two critical values
found above and, in between them, crosses q ¼ " 1

2 at which point
H¼ 0. In this case, the conservation law (31) confines the dynamics to
a cone, whose projection into the XY plane is shown in Fig. 8(b).

The schematic in Fig. 6, which is defined for finite L, is somewhat
misleading, as the trajectories of all three vortices lie along straight
lines parallel to the line connecting vortices 1 and 3 in the figure and
are not horizontal. Rotating the coordinate system so that the trajecto-
ries are horizontal, we find that

x1 ¼
t "

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 4

p

2
; x2 ¼

t þ
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 4

p

2
; x3 ¼ t;

y1 ¼ "1; y2 ¼ "1; y3 ¼ "2:

The dynamics of this case are shown in Fig. 9 and were known to
Gr€obli,7 Sec. IV. Vortex 1 slows down and comes to rest at x¼ 0,
transferring its energy to vortex 2.

VII. GENERALIZATION TO C2 6¼ 1
In this section, we will generalize to the case in which

C1 ¼ "C3 ¼ 1 but 0 < C2 ¼ C 6¼ 1, i.e., the case when the remaining

vortex has a distinct positive circulation. Exchange scattering is no lon-
ger possible since vortices 2 and 3 can no longer form a dipole and
escape. Consequently, some bifurcation must reconfigure the phase
plane dynamics depicted in Fig. 8.

The Jacobi coordinate reduction yields transformed circulations,

j1 ¼
C

Cþ 1
; j2 ¼ " 1þ C

C
; j3 ¼ C:

As in the previous case, j2 < 0, so change of variables and Hamiltonian
structure of Sec. IVC2 apply, and the Hamiltonian (28) reads

HðX;Y;Z;HÞ ¼C
2
log ðZðC2 þ 1Þ þ ð1" C2ÞH" 2CXÞ

" C
2
log ðZ þHÞ þ 1

2
log ðZ þ XÞ:

While we were unable to find as useful a geometric interpretation
of the coordinates as in Eq. (31), we still have that Y¼ 0 whenever the
three vortices are collinear. Moreover, X ! "1 as jjr2 " r3jj ! 1
and X ! þ1 as jjr1 " r2jj ! 1. This last observation allows us to
discriminate between direct and exchange scattering.

The system evolves according to

dX
dt

¼ 2CY
Z þH

" 2Y
X þ Z

" 2Cð1þ C2ÞY
ðC2 þ 1ÞZ þ ð1" C2ÞH" 2CX

;

dY
dt

¼ 2" 2CX
Z þH

þ 2Cð1þ C2ÞX " 4C2Z
ZðC2 þ 1Þ þ ð1" C2ÞH" 2CX

;

dZ
dt

¼ 2Y
Z þ X

" 4C2Y
ZðC2 þ 1Þ þ ð1" C2ÞH" 2CX

:

(38)

A. The phase space for C2 6¼ 1
The equilibria of (38), which must satisfy Z> 0 by Eq. (26) and

satisfy the constraint (27), are

E6
tri ¼H

CðC" 1Þ
Cþ 1
6

ffiffiffi
3

p
C

0

B@

1

CA; H< 0;

E"1 ¼
CH

C2 " 1
1" 2C2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2" 3

p

0

 !

; H> 0;C>

ffiffiffi
3

p

2
;

EC ¼ CH
C2" 1

1" 2C2"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2 " 3

p

0

 !

; H> 0;

ffiffiffi
3

p

2
<C< 1;

E1 ¼
CH

C2 " 1
1" 2C2 "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2 " 3

p

0

 !

; H< 0;C> 1:

(39)

FIG. 9. The x-component of the solution for q¼ 0, corresponding to a trajectory in
the middle phase plane of Fig. 8.
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The same formula describes these last two, but they represent dif-
ferent vortex configurations and are defined for different parameter
values. Only the X and Y coordinates are displayed; the Z coordinate is
the positive solution to Eq. (27).

The system also has singularities at

S1C ¼
0

0

 !

; H < 0; C > 0;

S"1C ¼
2CH
C2 " 1

0

0

@

1

A; HðC" 1Þ > 0:

(40)

The dependence of the equilibria and singularities on C and H
are most easily understood graphically using a bifurcation diagram, as
shown in Fig. 10. Only the equilibria E6

tri and E"1 and the singularity
S1C exist for C ¼ 1 and satisfy S1C ! S11 as C ! 1. The other
equilibria and singularities all satisfy Y¼ 0 and diverge with X ! þ1
as C ! 61. The points S"1C; E1, and EC all diverge to 1 as
C ! 16. The equilibria E"1 and EC merge in a saddle-node bifurca-
tion at C ¼

ffiffi
3

p

2 . 0:866.
The equilibria EC and E1 correspond to collinear arrangements

with the vortices of strength C and 1 in the middle, respectively. The
singularity S"1C corresponds to the limit of a family of hierarchical
orbits in which vortices 2 and 3, with circulations C and –1, form a
tight pair orbiting vortex 1 some distance away.

We now consider the phase space as C varies, again plotting the
projection of the upper sheet of the hyperboloid onto the XY plane.
First, we show the case C > 1 as shown in Fig. 11. ForH < 0, a collin-
ear state E1 appears on the X-axis to the right of the region of closed
orbits seen in Fig. 8, while for H > 0, a new singular state S"1C
appears on the positive X-axis. Each of these is surrounded by a family
of periodic orbits that limit to a separatrix. In contrast to Fig. 8, all
orbits in the right half plane cross the X-axis and do not extend to1.

The family of unbounded orbits corresponding to exchange scat-
tering has been replaced by a family of orbits that cross the X-axis and
approach infinity heading southwest. We call these extended direct
scattering orbits. One such orbit with C ¼ 2 is shown in Fig. 12.
Remarkably, the coordinates of this trajectory, but not its time-
parameterization, are given by Gr€obli and displayed in his dissertation
[Ref. 20, Eqs. (7.17), (7.19), and (7.20) and Fig. 5]. As t ! 61, vorti-
ces 1 and 3 form a dipole that moves along a nearly straight line, while
at intermediate times, vortex 3 has changed partners and forms a
dipole with vortex 2 that moves along a roughly circular orbit.

Figure 13 shows representative phase planes with
ffiffi
3

p

2 < C < 1.
While the topology in Figs. 11 and 13 looks the same, they differ in the
kinds of singularities and fixed points. ForH < 0; the singularityS1C
remains unchanged from Fig. 11, while the equilibrium E1 to the right
of the origin is replaced by a singularityS"1C. ForH > 0, the equilib-
rium E"1 is unchanged from Fig. 11, while the singular pointS"1C is
replaced by the equilibrium EC.

Figure 14 shows phase planes for C <
ffiffi
3

p

2 . The phase plane for
H < 0 is equivalent to that in Fig. 13. However, the H > 0 phase

FIG. 10. The X component of the equilibria (solid lines) and singularities (dashed
lines) given in Eqs. (39) and (40) for (a) H ¼ "1 and (b) H¼ 1. Figures 8, 11, 13,
and 14 show phase plane diagrams at the C values indicated by the vertical lines.

FIG. 11. The phase planes for C ¼ 1:7 > 1. (a) H < 0, showing the equilibria E6
tri

at the separatrix intersections, the singular point S1C (point) and the collinear state
E1 (þ). (b) H > 0, with singular point S"1C (point) and collinear state E"1 at the
separatrix intersection.

FIG. 12. An extended direct scattering solution with C ¼ 2 and q ¼ " 9
2. This is a

direct simulation of a solution whose trajectory Gr€obli computed in closed form.
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plane has changed significantly. At C ¼
ffiffi
3

p

2 , the equilibria EC and E"1

collide and annihilate in a saddle-node bifurcation, so the phase plane
contains no equilibria or singularities. All the orbits for H > 0 are of
the (non-extended) direct scattering type.

B. Explaining the scattering for C 6¼ 1
The setup of the three-vortex scattering phenomenon in the gener-

alized system remains as shown in Fig. 6, except that C2 ¼ C 6¼ 1 and
the two points forming the dipole are separated by a distance d

C with
positions r1 ¼ h"L; qþ Cd

2 i; r2 ¼ h0;"di, and r3 ¼ h"L; q" Cd
2 i.

We will again take d¼ 1. The generalized Hamiltonian and angular
momentum in the new coordinates,H ! log ðCÞ as L ! þ1; and,

H ¼ Cð1þ 2qÞ:

We follow the process described in Sec. VID to calculate the criti-
cal energy. For H < 0; that is, for q < " 1

2, the critical energy level
remains the energy of the equilibria E6

tri. This again leads to the value

q"crit ¼ "1 given by Eq. (36). For H > 0 and C >
ffiffi
3

p

2 , the critical
energy is again that of the collinear equilibrium E"1,

qþcrit ¼
ðCþ 1Þ2 C" 1ð Þ ðBþ 1ÞðCþ 1Þ2 C2 " 1ð Þ

"2AC2 þ B C4 " 1ð Þ " 1" C2ð Þ2

 !C

2 ACþ Bð Þ " 1
2
;

where

A ¼ 1" 2C2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2 " 3

p
and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2 " 1Þ2 þ C2A2

q
:

This matches the value 7
2 given by Eq. (37) for C ¼ 1. Since there is no

hyperbolic fixed point when H > 0 and C <
ffiffi
3

p

2 , there should be only
one singular point in the scattering diagram. Two such diagrams are
shown in Fig. 15, demonstrating the disappearance of the second sin-
gularity for small C. For C ¼ 0:4, the curve jumps by 2p at
q . "0:88. This is explained by the disappearance of a loop in the
path of vortex 3; see Fig. 16.

VIII. CONCLUSION
In this paper, we have introduced a coordinate system for the

three-vortex system that, in contrast with previously used reduction
methods, avoids introducing artificial singularities into the equations
of motion by preserving the topology of the dynamics. It maintains the
problem’s Hamiltonian structure by introducing Nambu brackets.
These coordinates simplify phase-space reasoning and shed new
insight into the scattering between a vortex dipole and an isolated vor-
tex. The singular dynamics in trilinear coordinates are equivalent to
projecting the dynamics described here into the plane Y¼ 0, with the
singular curve @Dphys equivalent to the symmetry line Y¼ 0 of the
spherical or hyperboloidal phase surface.

This reduction should help analyze additional problems in point-
vortex dynamics. We mention several such problems. First, the trilin-
ear coordinate system has been applied to related systems of point

FIG. 13. The phase planes for C ¼ 0:9 2
! ffiffi

3
p

2 ; 1
"
. (a) H < 0, with two singular

points, S1C and S"1C (points), and two equilibria E6
tri at the separatrix intersections.

(b)H > 0, with collinear equilibria EC (þ) and E"1 at the separatrix intersection.

FIG. 14. The phase planes for C ¼ 0:4 2 0;
ffiffi
3

p

2

' (
. (a) The case H < 0 with sin-

gular points S1C (left) and S"1C (right). (b) The case H > 0, which has no fixed
points or singular points.

FIG. 15. (a) The scattering angle as a function of q for C ¼ 0:4. (b) The case
C ¼ 1:7.

FIG. 16. (a) The vortex trajectories with C ¼ 0:4 and q ¼ "0:9. (b) The trajecto-
ries with q ¼ "0:85. The insets show a small loop on the trajectory of vortex 3 in
the left image that has disappeared in the right image, explaining the 2p jump in the
dependence of the scattering angle shown in Fig. 15.
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vortices, and the reduction developed in this paper should simplify
their analysis. A simple example is quasigeostrophic vortices in which
a Bessel function replaces the logarithmic potential, but the dynamics
is essentially equivalent.35 More interestingly, the four-vortex problem
in the integrable case where the total circulation and linear impulse
both vanish, has been reduced to trilinear coordinates,36 and here, the
dynamics become more complicated.

Second, classifying all the changes to the dynamics as the circula-
tions change is surprisingly complicated. Many papers get partway to
this goal. Aref first attempted this in the 1979 paper introducing the
trilinear coordinate system,8 but the singularity of collinear relative
equilibria in these coordinates hampered this effort. Conte classified
the bifurcations of the relative equilibria and performed a partial stabil-
ity analysis21 using a reduction that is very difficult to interpret.
Tavantzis and Ting made another study using Synge’s trilinear formu-
lation.11 Aref, citing his difficulty in following this analysis, returned to
the problem in 2009.22 That approach finds the bifurcations of relative
equilibria and their stability but does not describe the dynamics
beyond this. The analysis of other phenomena, such as the self-similar
collapse of the vortex triple, has required yet other coordinate sys-
tems.23,33 By contrast, the coordinate system introduced here describes
the global dynamics in the simplest form possible while yielding equa-
tions that can be analyzed using standard methods, even near collaps-
ing states and collinear relative equilibria.

Finally, we mention the motion of four vortices. It is well
known that the interaction of two dipoles leads to chaotic scatter-
ing,37–39 but the analysis in previous results is somewhat cursory
and makes few quantitative predictions. The motion is non-
integrable, so Nambu bracket reductions do not apply. However,
Ref. 38 demonstrates a chaotic scattering process consisting of a
sequence of three-vortex interactions in which the fourth vortex
remains far from the three strongly interacting vortices during each
interaction. Thus, our analysis of the three-vortex problem will serve
as the leading-order part of an asymptotic analysis of the problem in
this limit.

SUPPLEMENTARY MATERIAL
See the supplementary material for the steps required to integrate

Eq. (30) to obtain the formula for the scattering angle plotted in Fig. 7.
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