MATH 108: Elementary Probability and Statistics

Ramapo College of New Jersey

Instructor: Dr. Atul Anurag

Semester: Fall 2025 Date: October 27, 2025

Uniform and Normal Probability Distributions

Continuous Random Variable:

A continuous random variable is one that can take on any value within a range of numbers, not just specific separate values.

- A discrete random variable has countable outcomes (e.g., rolling a die: 1, 2, 3, 4, 5, 6).
- A **continuous** random variable can take any value along a continuum (e.g., 0 to 30 minutes late, including 5.2, 5.25, or 5.257 minutes).

For continuous variables, the probability of getting an **exact value** (like exactly 5 minutes late) is **zero**. Instead, we consider the probability of being within a **range**, such as between 5 and 10 minutes.

Probability Density Function (PDF)

A probability density function is an equation that describes how probabilities are distributed for a continuous random variable.

A valid pdf must satisfy:

- 1. The total area under the graph equals 1 (all possible outcomes together have probability 1).
- 2. The height of the graph (the pdf value) is always greater than or equal to 0.

Example

Let

X = number of minutes your friend is late.

Your friend could arrive anytime from 0 to 30 minutes late, with all times equally likely. Thus,

$$X \sim \text{Uniform}(0, 30).$$

Since all values are equally likely, the probability of being between two times depends only on the **length of the interval**:

$$P(x_1 \le X \le x_2) = \frac{x_2 - x_1}{30}.$$

Example Calculations:

(a) Probability that your friend is between 10 and 20 minutes late:

$$P(10 \le X \le 20) = \frac{20 - 10}{30} = \frac{1}{3} \approx 0.333$$

(b) It is 10 a.m. There is a 20% chance your friend will arrive within the next t minutes:

$$P(0 \le X \le t) = 0.20 \Rightarrow \frac{t}{30} = 0.20 \Rightarrow t = 6$$

So there is a 20% chance your friend will arrive within the next 6 minutes.

Practice Problems: Uniform Distribution

Problems 11–14: Friend Arrival Time (Uniform Distribution, $0 \le X \le 30$ minutes)

- (11) (a) Find the probability that your friend is between 5 and 10 minutes late.
 - (b) It is 10 a.m. There is a 40% probability your friend will arrive within the next ____ minutes.
- (12) (a) Find the probability that your friend is between 15 and 25 minutes late.
 - (b) It is 10 a.m. There is a 90% probability your friend will arrive within the next ____ minutes.
- (13) Find the probability that your friend is at least 20 minutes late.
- (14) Find the probability that your friend is no more than 5 minutes late.

Problems 15–16: Uniform Distribution Examples

- 15. The random-number generator on calculators randomly generates a number between 0 and 1. Let X be the number generated; X follows a uniform probability distribution.
 - (a) Draw the graph of the uniform density function.
 - (b) What is the probability of generating a number between 0 and 0.2?
 - (c) What is the probability of generating a number between 0.25 and 0.6?
 - (d) What is the probability of generating a number greater than 0.95?
 - (e) Use your calculator or statistical software to randomly generate 200 numbers between 0 and 1. What proportion of the numbers are between 0 and 0.2? Compare the result with part (b).
- 16. The reaction time X (in minutes) of a chemical process follows a uniform probability distribution with $5 \le X \le 10$.
 - (a) Draw the graph of the density curve.
 - (b) What is the probability that the reaction time is between 6 and 8 minutes?
 - (c) What is the probability that the reaction time is between 5 and 8 minutes?
 - (d) What is the probability that the reaction time is less than 6 minutes?

Solutions: Uniform Distribution Problems

Problems 11–14: Friend Arrival Time $(X \sim \text{Uniform}(0,30))$

(11) (a)
$$P(5 \le X \le 10) = \frac{10 - 5}{30} = 0.1667 \approx 16.7\%$$

(b)
$$0.4 = \frac{t-0}{30} \implies t = 12 \text{ minutes}$$

(12) (a)
$$P(15 \le X \le 25) = \frac{25 - 15}{30} = 0.3333 \approx 33.3\%$$

(b)
$$0.9 = \frac{t-0}{30} \implies t = 27 \text{ minutes}$$

(13)
$$P(X \ge 20) = \frac{30 - 20}{30} = 0.3333 \approx 33.3\%$$

(14)
$$P(X \le 5) = \frac{5-0}{30} = 0.1667 \approx 16.7\%$$

Problems 15: Random Number Generator $(X \sim \text{Uniform}(0,1))$

(b)
$$P(0 \le X \le 0.2) = 0.2 = 20\%$$

- (c) $P(0.25 \le X \le 0.6) = 0.6 0.25 = 0.35 = 35\%$
- (d) P(X > 0.95) = 1 0.95 = 0.05 = 5%
- (e) Simulation: Generating 200 numbers, expected proportion in [0, 0.2] is ≈ 0.2 ; actual proportion may vary slightly.

Problem 16: Reaction Time $(X \sim \text{Uniform}(5, 10))$

(b)
$$P(6 \le X \le 8) = \frac{8-6}{10-5} = \frac{2}{5} = 0.4 = 40\%$$

(c)
$$P(5 \le X \le 8) = \frac{8-5}{5} = 0.6 = 60\%$$

(d)
$$P(X \le 6) = \frac{6-5}{5} = 0.2 = 20\%$$

Practice Problems: Probability Density Functions (PDFs)

17. The probability density function of a continuous random variable X is given by:

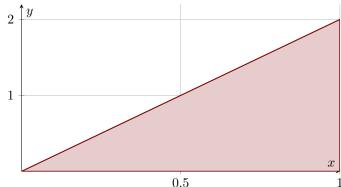
$$y = 2x$$
, for $0 \le x \le 1$

- (a) Draw the graph of the density curve for the continuous random variable.
- (b) Verify that it is a valid probability density function.
- (c) Find the probability that $X < \frac{1}{2}$.
- (d) Find the probability that $X > \frac{1}{2}$.
- (e) Find the probability that $X = \frac{1}{2}$.

Solutions: Probability Density Function Problem

(17) (a) The graph of y = 2x for $0 \le x \le 1$ is a straight line starting at (0,0) and ending at (1,2). It forms a right triangle under the line and above the x-axis.

PDF: $y = 2x, \ 0 \le x \le 1$



(b) The area under the curve represents the total probability. The shape is a right triangle with base 1 and height 2:

Area =
$$\frac{1}{2}$$
(base)(height) = $\frac{1}{2}$ (1)(2) = 1

Since the total area equals 1 and the graph never goes below the x-axis, this is a valid probability density function.

(c) To find $P(X < \frac{1}{2})$, look at the smaller triangle from x = 0 to x = 0.5. The base is 0.5 and the height at x = 0.5 is y = 2(0.5) = 1.

Area =
$$\frac{1}{2}(0.5)(1) = 0.25$$

So,
$$P(X < \frac{1}{2}) = 0.25$$
.

(d) The total probability is 1, so:

$$P(X > \frac{1}{2}) = 1 - 0.25 = 0.75$$

(e) For a continuous random variable, the probability at a single point is zero:

$$P(X = \frac{1}{2}) = 0$$

18. The probability density function of a continuous random variable X is given by:

$$y = \frac{1}{2} - \frac{1}{2}x$$
, for $-1 \le x \le 1$

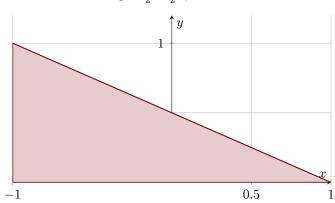
- (a) Draw the graph of the density curve for the continuous random variable.
- (b) Verify that it is a valid probability density function.
- (c) Find the probability that $X > \frac{1}{2}$.
- (d) Find the probability that $X < \frac{1}{2}$.
- (e) Find the probability that $X = \frac{1}{2}$.

Solution: Probability Density Function Problem

- (18) (a) The graph of $y = \frac{1}{2} \frac{1}{2}x$ is a straight line that:
 - starts at (x, y) = (-1, 1),
 - ends at (x, y) = (1, 0),
 - slopes downward from left to right.

The shaded area under this line represents the total probability.

PDF:
$$y = \frac{1}{2} - \frac{1}{2}x, -1 \le x \le 1$$



- (b) There are two conditions that must be satisfied:
 - 1. The graph must be above the x-axis. From the picture, $y \ge 0$ for all $-1 \le x \le 1$.
 - 2. The total area under the curve must equal 1. The shape is a right triangle:

$$A = \frac{1}{2}$$
(base)(height)

The base extends from x = -1 to x = 1, so b = 2. The height is h = 1 (from y = 0 to y = 1).

$$A = \frac{1}{2}(2)(1) = 1$$

Therefore, it is a valid probability density function.

(c) To find $P(X > \frac{1}{2})$, look at the small red triangle on the right side of the graph. - The base runs from $x = \frac{1}{2}$ to x = 1, so b = 1 - 0.5 = 0.5. - The height at $x = \frac{1}{2}$ is:

$$y = \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{4} = 0.25$$

So the height of the triangle is h = 0.25.

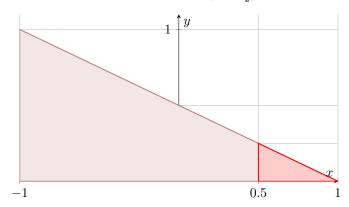
The area (probability) is:

$$A = \frac{1}{2}(b)(h) = \frac{1}{2}(0.5)(0.25) = 0.0625$$

Thus,

$$P(X > \frac{1}{2}) = 0.0625 = \frac{1}{16}$$

Shaded Region: $P(X > \frac{1}{2})$



(d)
$$P(X < \frac{1}{2}) = 1 - P(X > \frac{1}{2}) = 1 - 0.0625 = 0.9375 = \frac{15}{16}$$

(e) For a continuous random variable, the probability at a single point is always zero:

$$P(X = \frac{1}{2}) = 0$$

Normal Distribution

A continuous random variable is said to be *normally distributed* if its relative frequency histogram forms the shape of a **normal curve**, also called a **bell curve**.

- The curve is **symmetric** about the mean, μ .
- The standard deviation, σ , determines the spread of the curve.
- The points at $x = \mu \sigma$ and $x = \mu + \sigma$ are called **inflection points**. These are points where the curve changes from concave downward to concave upward (or vice versa):
 - To the left of $\mu \sigma$ and to the right of $\mu + \sigma$, the curve bends upward.
 - Between $\mu \sigma$ and $\mu + \sigma$, the curve bends downward.
- The highest point of the curve occurs at $x = \mu$, the mean of the distribution.

Properties of the Normal Density Curve

The normal probability density function satisfies all requirements of a probability distribution. Its key properties are:

- 1. **Symmetry:** The curve is symmetric about its mean, μ .
- 2. Single Peak: Since mean = median = mode, the normal curve has a single peak at $x = \mu$.

- 3. **Inflection Points:** The curve changes concavity at $x = \mu \sigma$ and $x = \mu + \sigma$.
- 4. **Total Area:** The total area under the curve equals 1.
- 5. **Equal Halves:** The area under the curve to the right of the mean equals the area to the left of the mean, each equal to $\frac{1}{2}$.
- 6. **Asymptotic Behavior:** As $x \to \infty$ or $x \to -\infty$, the curve approaches, but never touches, the horizontal axis.
- 7. Approximately 68% of the area under the curve lies within one standard deviation of the mean:

$$\mu - \sigma \le X \le \mu + \sigma$$

8. Approximately 95% of the area lies within two standard deviations of the mean:

$$\mu - 2\sigma \le X \le \mu + 2\sigma$$

9. Approximately 99.7% of the area lies within three standard deviations of the mean:

$$\mu - 3\sigma \le X \le \mu + 3\sigma$$

Definition

Area under a Normal Curve:

Suppose a random variable X is normally distributed with mean μ and standard deviation σ . The area under the normal curve for any interval of X represents either:

- The **proportion of the population** with values in that interval, or
- The **probability** that a randomly selected individual from the population has a value in that interval.

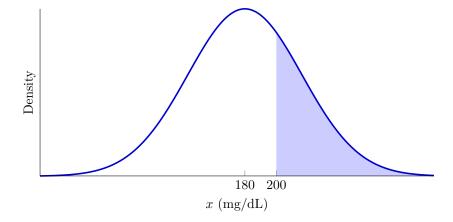
Note

Because the total area under the curve is 1, any area corresponding to an interval of values can be interpreted as a probability.

Example: Interpreting the Area under a Normal Curve

Problem: The serum total cholesterol for males 20–29 years old is approximately normally distributed with mean $\mu = 180$ mg/dL and standard deviation $\sigma = 36.2$ mg/dL, based on data from the National Health and Nutrition Examination Survey.

(a) Draw a normal curve with parameters labeled.



(b) Shade the region to the right of x=200. Individuals with cholesterol greater than 200 mg/dL are considered to have high cholesterol. On the normal curve, shade the area under the curve for x>200.

(c) Interpret the area: Suppose the area under the normal curve to the right of x=200 is 0.2903. This means that approximately 29.03% of males aged 20–29 have total cholesterol greater than 200 mg/dL. Alternatively, the probability that a randomly selected male in this age group has high cholesterol is 0.2903.

End of Lecture #12