MATH 108: Elementary Probability and Statistics

Ramapo College of New Jersey

Instructor: Dr. Atul Anurag
Date: September 25, 2025

Probability

Semester: Fall 2025

Basic Definitions

- Experiment: A process that leads to one of several possible outcomes.
- Event (E): A set of outcomes from a probability experiment.

Independent Events

Definition:

Two events A and B are **independent** if the occurrence of one does not affect the probability of the other.

Example 1: Tossing a Coin and Rolling a Die

Let:

- Event A: Flip a coin and get heads.
- Event B: Roll a die and get a 6.

Calculate the sample space

There are:

- 2 outcomes when flipping a coin: {Heads, Tails}
- 6 outcomes when rolling a die: $\{1, 2, 3, 4, 5, 6\}$

Since the events are independent, we can form a combined sample space of all possible outcomes:

Total outcomes =
$$2 \times 6 = 12$$

Favorable outcomes where we get **Heads and 6**:

Only one: (Heads, 6)

So:

$$P(\text{Heads and } 6) = \frac{1}{12}$$

Multiplication Rule

For Independent Events:

$$P(A \cap B) = P(A) \cdot P(B)$$

Example 1: Use the Multiplication Rule

$$P(A) = \frac{1}{2}, \quad P(B) = \frac{1}{6}$$

$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$$

Using the multiplication rule gives the same result with far less work, especially as problems become more complex.

Other Examples of Independent Events:

1. Two Coin Tosses

Let A: First toss is heads, B: Second toss is tails.

$$P(A \cap B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

2. Roulette Example

Probability ball lands on 17 two times in a row:

$$P(17 \text{ on both spins}) = \frac{1}{38} \cdot \frac{1}{38} = \frac{1}{1444}$$

3. Selecting With Replacement

Selecting a female student from a class of 10 (4 female, 6 male), replacing, and selecting again:

$$P(\text{female on both}) = \frac{4}{10} \cdot \frac{4}{10} = \frac{16}{100} = 0.16$$

Example 2: Probability of Getting Five Heads in a Row

Problem: What is the probability of obtaining five heads in a row when flipping a fair coin?

Solution

Each flip of a fair coin has two equally likely outcomes: Heads (H) or Tails (T). The probability of getting heads on a single flip is:

$$P(H) = \frac{1}{2}$$

Since each flip is independent, the probability of getting five heads in a row is the product of five independent events:

$$P(5 \text{ Heads}) = P(H) \cdot P(H) \cdot P(H) \cdot P(H) \cdot P(H) = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$P(5 \text{ Heads}) = \boxed{\frac{1}{32}} \approx \boxed{0.03125}$$

Examples of Independent Events and Their Probabilities

Rolling Four Ones in a Row

Problem: What is the probability of obtaining four ones in a row when rolling a fair, six-sided die?

Solution: Each die roll is independent, and the probability of rolling a 1 on one roll is:

$$P(1) = \frac{1}{6}$$

The probability of rolling four ones in a row is:

$$P(4 \text{ ones}) = \left(\frac{1}{6}\right)^4 = \frac{1}{1296}$$

$$P(4 \text{ ones}) = \boxed{\frac{1}{1296}} \approx \boxed{0.0007716}$$

Interpretation: There is less than a 0.1% chance of rolling four 1's in a row. This is a very rare event, and we would not expect it to happen often, even in many repeated trials.

Example 2: Probability of Both People Being Left-Handed

Problem: About 13% of the population is left-handed. If two people are randomly selected:

- 1. What is the probability that both are left-handed?
- 2. What is the probability that at least one is right-handed?

Solution:

Let P(L) = 0.13 be the probability a person is left-handed. Let P(R) = 1 - P(L) = 0.87 be the probability a person is right-handed.

1. Probability both are left-handed:

$$P(\text{both left-handed}) = 0.13 \times 0.13 = \boxed{0.0169}$$

2. Probability that at least one is right-handed:

Use the complement rule:

$$P(\text{at least one right-handed}) = 1 - P(\text{both left-handed})$$

$$= 1 - 0.0169 = \boxed{0.9831}$$

Interpretation:

- There is only a 1.69% chance that both people are left-handed.
- There is a 98.31% chance that at least one of the two people is right-handed.
- This reflects how uncommon it is to find two left-handed people randomly, given only 13% of the population is left-handed.

Standard 52-Card Deck Summary for Probability Problems

• Total number of cards in a standard deck:

$$N = 52$$

• Number of suits:

4 (Hearts, Diamonds, Clubs, Spades)

• Number of cards per suit:

13 cards per suit: $\{A, 2, 3, \dots, 10, J, Q, K\}$

• Number of red cards:

26 (Hearts and Diamonds)

• Number of black cards:

26 (Clubs and Spades)

• Number of face cards:

12 (J, Q, K in each suit: 3×4)

• Number of Aces:

4 (1 per suit)

• Number of cards with value 10 or higher (10, J, Q, K):

16 cards (4 of each)

• Probability of drawing a card of a specific suit:

$$P(\text{specific suit}) = \frac{13}{52} = \frac{1}{4}$$

• Probability of drawing a face card:

$$P(\text{face card}) = \frac{12}{52} = \frac{3}{13}$$

• Probability of drawing an Ace:

$$P(Ace) = \frac{4}{52} = \frac{1}{13}$$

• Probability of drawing a red card:

$$P(\text{red card}) = \frac{26}{52} = \frac{1}{2}$$

• Probability of drawing a number card (2 through 10):

9 values
$$\times$$
 4 suits = $36 \Rightarrow P = \frac{36}{52} = \frac{9}{13}$

With vs. Without Replacement

With Replacement

Definition: After selecting an item, it is returned to the sample space before the next selection.

- The sample space remains the same for each trial.
- Probabilities do not change.
- Events are typically independent.

Example: Drawing a card from a deck, replacing it, then drawing again.

$$P(Ace) = \frac{4}{52}$$
 each time

Without Replacement

Definition: After selecting an item, it is not returned before the next selection.

- The sample space decreases after each selection.
- Probabilities change.
- Events are typically dependent.

Example: Drawing two cards without replacement:

$$P(\text{1st Ace}) = \frac{4}{52}, \quad P(\text{2nd Ace} \mid \text{1st Ace}) = \frac{3}{51}$$

$$P(\text{Both Aces}) = \frac{4}{52} \cdot \frac{3}{51}$$

Summary Table

Feature	With Replacement	Without Replacement
Item returned?	Yes	No
Sample space changes?	No	Yes
Events independent?	Usually Yes	Usually No
Probability changes?	No	Yes

Dependent Events

Two events are **dependent** if the outcome of one does affect the probability of the other. *Example:* Drawing two cards without replacement.

Disjoint (Mutually Exclusive) Events

Definition: Events A and B are disjoint if they cannot both occur at the same time.

$$P(A \cap B) = 0$$

Important: Disjoint events are always dependent because if one occurs, the other cannot.

Comparison Table

Feature	Independent Events	Disjoint Events
Can both occur?	Yes	No
Affect each other?	No	Yes
Formula	$P(A \cap B) = P(A) \cdot P(B)$	$P(A \cap B) = 0$
Are they dependent?	No	Yes

Example 1: Roulette (Repeated Independent Events)

In roulette, the wheel has 38 slots (0, 00, 1-36). What is the probability that the ball lands on 17 two times in a row?

Solution:

Each spin is independent. Let:

$$P(17 \text{ on spin } 1) = \frac{1}{38}, \quad P(17 \text{ on spin } 2) = \frac{1}{38}$$

$$P(17 \text{ on both spins}) = \frac{1}{38} \cdot \frac{1}{38} = \frac{1}{1444} \approx 0.0006925$$

Interpretation: Expected about 7 times in 10,000 trials.

Multiplication Rule for n Independent Events

If events E_1, E_2, \ldots, E_n are independent:

$$P(E_1 \cap E_2 \cap \cdots \cap E_n) = P(E_1) \cdot P(E_2) \cdot \cdots \cdot P(E_n)$$

Example 2: Survival Probability

Given: Probability a 24-year-old male survives one year = 0.9986.

(a) Probability all 3 survive:

$$P(\text{all 3 survive}) = 0.9986^3 = 0.9958$$

Interpretation: In 1000 samples, 996 will have all survive.

(b) Probability all 20 survive:

$$P(\text{all } 20 \text{ survive}) = 0.9986^{20} = 0.9724$$

Interpretation: In 1000 samples, 972 will have all survive.

Computing "At Least One" Using the Complement Rule

Problem:

Find the probability that at least one of 1000 males dies in one year.

Solution:

$$P(\text{at least one dies}) = 1 - P(\text{none die}) = 1 - 0.9986^{1000}$$

$$= 1 - 0.2464 = 0.7536$$

Interpretation: In 100 samples, about 75 will have at least one death.

Card Deck Assumptions

- A standard deck has 52 cards.
- 4 suits: Hearts, Diamonds (red), Clubs, Spades (black).
- Each suit has 13 cards: A, 2-10, J, Q, K.
- Face cards: J, Q, K (12 total).
- Aces: 4 total.

With Replacement

Q1. Probability that both cards drawn are Aces (with replacement).

Solution:

$$P(\text{Ace}) = \frac{4}{52} = \frac{1}{13}$$

$$P(2 \text{ Aces with replacement}) = \frac{1}{13} \times \frac{1}{13} = \frac{1}{169}$$

Q2. First card is a Heart, second is a King (with replacement).

Solution:

$$P(\text{Heart}) = \frac{13}{52} = \frac{1}{4}, \quad P(\text{King}) = \frac{4}{52} = \frac{1}{13}$$

$$P = \frac{1}{4} \times \frac{1}{13} = \frac{1}{52}$$

Q3. All three cards drawn are red (with replacement).

Solution:

$$P(\text{red}) = \frac{26}{52} = \frac{1}{2}$$

 $P(3 \text{ reds}) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$

Q4. Face card followed by a number card (2-10).

$$P(\text{face}) = \frac{12}{52} = \frac{3}{13}, \quad P(\text{number card}) = \frac{36}{52} = \frac{9}{13}$$
$$P = \frac{3}{13} \times \frac{9}{13} = \frac{27}{169}$$

Without Replacement

Q5. Probability both cards are Kings (without replacement).

$$P(1\text{st King}) = \frac{4}{52}, \quad P(2\text{nd King}) = \frac{3}{51}$$

$$P = \frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} = \frac{1}{221}$$

Q6. Queen first, then a Spade (without replacement).

$$P(\text{Queen}) = \frac{4}{52}$$
, $P(\text{Spade} \mid \text{Queen not Spade}) = \frac{13}{51}$
 $P(\text{Spade} \mid \text{Queen is Spade}) = \frac{12}{51}$

So,

$$P = \frac{1}{13} \times \left(\frac{12}{51} \times \frac{1}{4} + \frac{13}{51} \times \frac{3}{4}\right) = \frac{1}{13} \times \left(\frac{3}{51} + \frac{39}{204}\right) = (\text{mixed case})$$

Alternatively, using total probability:

$$P = \frac{4}{52} \times \frac{13}{51} = \frac{1}{13} \times \frac{13}{51} = \frac{1}{51}$$

Q7. Probability all 3 cards are red (without replacement).

$$P = \frac{26}{52} \times \frac{25}{51} \times \frac{24}{50} = \frac{26 \cdot 25 \cdot 24}{52 \cdot 51 \cdot 50} = \frac{15600}{132600} = \frac{13}{110}$$

Q8. At least one Ace in two cards (without replacement).

Complement approach:

$$P(\text{no Ace}) = \frac{48}{52} \times \frac{47}{51}$$

$$P(\text{at least one Ace}) = 1 - \frac{48}{52} \cdot \frac{47}{51} = 1 - \frac{2256}{2652} = \frac{396}{2652} = \frac{33}{221}$$

Q9. Face card then number card (without replacement).

$$P = \frac{12}{52} \times \frac{36}{51} = \frac{12 \cdot 36}{2652} = \frac{432}{2652} = \frac{36}{221}$$

Summary

- Use the multiplication rule for independent events: $P(E \cap F) = P(E) \cdot P(F)$
- For multiple independent events: $P(E_1 \cap E_2 \cdots \cap E_n) = \prod_{i=1}^n P(E_i)$
- Use the complement rule for "at least one": P(at least one) = 1 P(none)
- Disjoint events: Cannot happen together $(P(A \cap B) = 0)$; they are dependent.

End of Lecture #8