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Problem 1: Determine whether the series is absolutely convergent, conditionally convergent,
or divergent.
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Problem 2: Find the radius of convergence and interval of convergence of the series.
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3(a) Use the ratio test to determine whether the series converges or diverges:
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3(b) Use the root test to determine whether the series converges or diverges:
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4(a): Determine whether the following series is absolutely convergent, conditionally conver-
gent or divergent. Please state which test you are using:
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4(b) Determine whether the following series is absolutely convergent, conditionally conver-
gent or divergent. Please state which test you are using:
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5(a)Determine whether the following series is convergent or divergent. Please state which test
you are using.
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5(b)Determine whether the following series is convergent or divergent. Please state which test
you are using.
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6(a) Write down the first 3 non-zero terms in the Maclaurin series for the function
f (x) = x + cos(2x).

6(b) Find the first 3 non-zero terms in the Taylor series about a = 1 for the function
f (x) = 2 − x2.

7. Find the radius of convergence and interval of convergence for

∞

∑
n=1

(x + 2)n

n 3n

8(a): Solve for x
1 + x + x2 + x3 + · · · = 2

8(b): Find the Taylor polynomial or order 2 generated by f (x) = ln(x) about a = 1.
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