Problem Set 7

ATUL ANURAG email: aa2894@njit.edu

Problem 1: Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

(b) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$
(c) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$

Problem 2: Find the radius of convergence and interval of convergence of the series.

$$(a) \sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$
$$(b) \sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$$
$$(c) \sum_{n=1}^{\infty} \frac{n}{b^n} (x-a)^n, \ b > 0$$

3(a) Use the ratio test to determine whether the series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{(n+2)!}{n! \, 9^n}$$

3(b) Use the root test to determine whether the series converges or diverges:

$$\sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{3n}\right)^n$$

4(a): Determine whether the following series is absolutely convergent, conditionally convergent or divergent. Please state which test you are using:

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{4n^3 + n}}$$

4(b) Determine whether the following series is absolutely convergent, conditionally convergent or divergent. Please state which test you are using:

$$\sum_{n=1}^{\infty} (-1)^n \frac{e^n}{e^{2n} + 1}$$

5(a)Determine whether the following series is convergent or divergent. Please state which test you are using.

$$\sum_{n=1}^{\infty} \left(\frac{2+n^2}{1+2n^2}\right)^n$$

5(b)Determine whether the following series is convergent or divergent. Please state which test you are using.

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{1/n}$$

6(a) Write down the first 3 non-zero terms in the Maclaurin series for the function $f(x) = x + \cos(2x)$.

6(b) Find the first 3 non-zero terms in the Taylor series about a = 1 for the function $f(x) = 2 - x^2$.

7. Find the radius of convergence and interval of convergence for

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \ 3^n}$$

8(a): Solve for *x*

$$1+x+x^2+x^3+\cdots=2$$

8(b): Find the Taylor polynomial or order 2 generated by $f(x) = \ln(x)$ about a = 1.